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Abstract: Understanding the temporal organization of writing is key to studying writing processes. 

Existing methods to segment writing into phases often rely on arbitrary rules, extensive manual 
annotation, or focus on numerous transitions. This study aimed to develop an automated segmentation 

method to detect distinctive transition in the dominant writing process, particularly the transition from 
first draft to revision. For this, keystroke data (source-based L1 writing (N = 80) and text simplification 
in L2 (N = 88)) were manually annotated. The BEAST algorithm was applied for Bayesian change point 

detection, based on five characteristics derived from the annotation criteria: (1) percentage of the final 
text written so far, (2) distance between typed and remaining characters, (3) relative cursor position, (4) 
source use, and (5) pause timings. The first three features proved most effective in identifying change 

points. A rule-based approach was further applied to select one final change point, which resulted in 
mediocre accuracy ranging from 31% exact agreement to 49% agreement within 60 seconds. To 
conclude, the BEAST algorithm is useful in detecting a variety of change points in writing processes, yet 

connecting them to meaningful phases is still quite complex. 
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1. Introduction  

In the analysis of writing, the temporal organization of the writing process and sub processes 

— such as planning, drafting, revising, or consulting external sources — has only received 

limited attention. Van den Bergh & Rijlaarsdam (2001) were among the first researchers to 

clearly explain and demonstrate the importance of a more time-based approach to writing 

process research. Their focus was motivated by the fact that the task situation gradually 

changes as the writing process evolves, with the introduction and revision of new ideas 

becoming progressively less frequent as writers move towards a final version (Lo Sardo et al., 

2023). This also has an effect on the amount of text added and/or revised over time, especially 

when a composition task is divided over multiple sessions (Bowen & Van Waes, 2020). 

Additionally, the temporal organization of writing is influenced by the writers' profiles, i.e. 

depending on the writer’s preferences and experiences, writers will distribute cognitive 

activities differently (Van den Bergh & Rijlaarsdam, 2001; Van Waes & Schellens, 2003). 

Examining the temporal organization of the writing process can also provide key insights into 

self-regulation mechanisms (Saqr et al., 2021) and metacognitive strategies (Huang & Zhang, 

2022). Furthermore, certain temporal distributions of tasks in the writing process are also 

predictive of text quality levels (Xu, 2018). 

An often used method to examine the temporal organization of the writing process is to 

divide the writing process into phases, stages, segments, or episodes (e.g., Leijten et al., 2014; 

Sala-Bubaré et al., 2021; Xu & Xia, 2021). It is important to note here that this temporal 

approach to segmenting the writing process does not imply that composing texts is a linear 

process. Despite the continuous non-linearity that characterizes writing, a temporal approach 

adds an important perspective to the analysis of writing processes. This perspective is 

exemplified in the study by Xu & Xia (2021). They showed that overall writing time in second 

language writing is not affected by writing expertise. However, when the writing process was 

divided into three traditional sequential phases: prewriting/planning, formulation, and 

revising/reviewing, differences were found: Novice writers mainly focus on formulation, 

limiting the other phases, while more proficient writers distribute the time spent on the 

different phases more equally.   

For examining the temporal organization of writing, logging tools (e.g., keystroke logging 

and/or eye-tracking) are key as they allow for the collection of temporal data on mental 

activities that might not be (fully) available through introspection (Torrance & Conijn, 2024). 

Although a variety of approaches exist into segmenting keystroke log data, the 

operationalizations are often relatively arbitrary (e.g., segment the writing into three 

segments of equal duration) or require extensive manual labelling (S. Li & Yu, 2024). 

Accordingly, in this study we aim to develop an automated segmentation of writing processes 

that focuses on a distinctive transition in the dominant writing processes, based on keystroke 

data. 
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2. Related work 

The operationalization of time-based segmentation approaches differs across studies, with 

respect to the level of focus and the level of automatization. In addition, some approaches are 

more suitable for multi-session processes, while others are solely built for single-session 

processes. In the following, we distinguish four different types of segmentation approaches: 

time-based, content-based, version-based, and function-based.  

2.1 Time-based segmentation 

As stated above, Van den Bergh and Rijlaarsdam (2001) were among the first researchers who 

stressed the importance of a temporal approach to studying the writing process. In their 

thinking-aloud study, they modeled the occurrence of cognitive activities (orientation and 

planning activities versus formulating activities) as a function of the time elapsed since the 

start of the task. Including the total time elapsed so far or temporal location has subsequently 

been the approach in a variety of keystroke logging studies (see e.g., Zhang et al., 2016).  

Rather than using time directly into modelling the writing process, time-based approaches 

have been used to segment the keystroke log into several time-based segments. The most 

common approach is to divide the process into three segments of equal length (see e.g., De 

Lario et al., 2006; Tarchi et al., 2023), arguably because it can be easily referred to as the ‘start’, 

‘middle’, and ‘end’ of the writing process. Other studies have looked into more segments, 

including five (Leijten et al., 2019) and ten equal time intervals (Van Waes & Leijten, 2015). In 

the five intervals study, the authors used the first interval as a proxy for the initial planning 

phase, and the last interval as a proxy for the second draft, revision phase (Leijten et al., 2019).  

The main advantage of this interval approach is that it is intuitive and easy to automate. 

Inputlog (Leijten & Van Waes, 2013), a commonly used program to collect keystroke data, 

already provides a default option to split the writing process into intervals of equal length, 

where the number of segments can be defined by the user. Moreover, the approach facilitates 

the comparison of writing processes of different lengths. A downside of this approach is that 

time segments of different total lengths are compared. In addition, there is no clear consensus 

or rationale for an ‘optimal’ number of segments, and the question is if such an optimum 

would even exist. Regardless of the number of chosen segments, the distinction can be 

considered quite arbitrary, as it does not take into account the different activities performed 

within the writing process (e.g., a segment might consist of no keystrokes), different functions 

(e.g., whether the dominant process was drafting an outline or making post-draft revision), or 

the content written (cf. Xu & Xia, 2021).  

2.2 Content-based segmentation 

Rather than segmenting the writing process based on time, others have segmented the 

process based on the content written. Similar to including the total time elapsed so far, the 

total amount of characters produced so far can be used as a function to model the temporal 

aspect of the keystroke log. Some content-based segmentation approaches go beyond the 

number of characters produced towards the actual content produced. For example, Sala-
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Bubaré et al. (2021) manually distinguished different sections of an extended abstract in 

doctoral writing: title, introduction, objective, method, results, discussion, and sources. 

Segments that included two or more sections were labeled as global. These segments were 

then connected to activities in the writing process. Content-based segmentation is more 

common in analyses focusing on the writing product (linguistic analyses) rather than the 

writing process. For example, Crossley et al. (2022) used a content-based segmentation, in 

which they extracted different argumentation elements, such as primary claim, final claim, 

counterclaim, rebuttal, data, and concluding summary. Here they connected the incidence of 

these argumentative features with writing quality. 

The advantage of these content-based approaches is that it connects the writing process 

directly with the writing product. In addition, some of the segmentation might be done 

automatically by using natural language processing approaches. However, the disadvantage 

of these approaches is that they are very time-intensive if done manually. Both automated 

(with NLP) and manual approaches are especially difficult if many revisions are made during 

the writing process, as it is not always clear what writer is writing about if only part of a 

sentence is written and then revised (cf. Mahlow et al., 2022). 

2.3 Version-based segmentation 

Related to content-based approaches are the version-based segmentations. These types of 

segmentations explicitly distinguish between different versions created by intermediately 

saving the text-produced-so far or by ending/starting a new writing session. A version has 

been defined as: “a point in the production history of a text that is deemed relevant based on 

particular criteria, a version is thus a specific text-produced-so-far” (Mahlow et al., 2022, p. 

450). A version can be initiated by the writer or by the system (auto-save). For example, some 

studies have used automated versioning built into existing editors (see e.g., Lo Sardo et al., 

2023). Here the authors used two different types of text editors, with Google docs creating a 

version every minute (if any writing activity took place), and WeWrite which created a new 

version every 3 minutes. 

In writer-based versioning, the writer actively saves a version themselves (see e.g., the 

study on Wikipedia revision by Daxenberger & Gurevych, 2013). For example, Leijten et al. 

(2014) segmented the writing process of a single author in professional communication into 

five different segments, based on the five separate writing sessions the author employed. In 

a comparable way, Bowen & Van Waes (2020) created segments based on different sessions 

when students worked on their essays. In this qualitative study two essays were finalized after 

seven sessions; and one essay after five sessions. Interestingly, the version-based approaches 

was not the endpoint in both studies: Leijten et al. (2014)  further divided the sessions into 

beginning, middle, and end of the writing process (time-based segmentation), while Bowen & 

Van Waes (2020) decided to further segment the sessions using a time-based approach based 

on the temporal ordering of the revisions. Rather than subdividing the sessions, 

Buschenhenke et al. (2023) chose to combine sessions, using clustering. In their study, 386 
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writing sessions were identified in the writing of a complete novel, which were subsequently 

combined into nine clusters based on the non-linearity characteristics within the sessions.  

The advantage of focusing on saved versions or sessions is that it does not rely on 

keystroke logging, hence it can be implemented relatively easily. A downside of automated 

versioning is that automated versioning does not reflect the writer’s process management or 

their decision to segment it.  Further, both automated versioning and writer-based versioning 

might not necessarily fit the researcher’s aim. In addition, the writing sessions might differ 

substantially in total duration of the sessions and in the content created within the sessions. 

For example, Buschenhenke et al. (2023) found sessions ranging from a couple of minutes to 

over three hours. For some of the sessions, the time between sessions was very short, 

indicating that some of these sessions might be combined. In addition, some of the longer 

sessions included substantial idle time (over 30 minutes), indicating that these sessions might 

be split. The fact that merely distinguishing the writing process based on sessions is not always 

enough is also visible from the fact that these sessions have been further subdivided (Van 

Waes et al., 2014), grouped (Bowen & Van Waes, 2020; Buschenhenke et al., 2023). 

Accordingly, some researchers did not follow the authors’ versioning, but focused on 

researcher-based versioning created post-hoc, often based on some additional process 

characteristics obtained from keystroke logging. For example, Cislaru & Olive (2018) identified 

the start of a new version based on a long pause, while Mahlow (2015) automatically defined 

versions based on changes in the production. A new version was identified if the writer 

switched from continuous writing to continuous deletion or insertion. The latter could already 

be seen as a more function-based approach, distinguishing between text production and 

revision. 

2.4 Function-based segmentation 

Function-based segmentations indicate a segmentation based on a dominant (cognitive) 

writing process or activity. A common distinction is between the three most-cited writing 

(sub)processes planning, translating, and reviewing (Flower & Hayes, 1981). This is often 

based on manual annotation, where process visualizations such as Inputlog’s process graph 

(Leijten & Van Waes, 2013), are utilized as a resource to aid the annotation. For an example 

of the process graph, see Fout! Verwijzingsbron niet gevonden., p. 348. Xu & Xia (2021) 

manually divided the writing process of L2 writers into these three subprocesses. 

Prewriting/planning was defined as: “the temporal span from the beginning of a writing event 

upon topic assignment till the commencement of continuous textual output, featured by the 

flat product line (the solid line) following the beginning of a writing event” (p. 592; see also 

Figure 1 and related process graph description). Formulation was defined as “the process of 

continuous textual output, featured by steeply climbing process and product lines” (p. 592). 

Finally, reviewing/revising was defined as “the process temporally following the formulation 

process, with the cursor position (the dotted line) being moved to the beginning part of the 

text for reviewing and revising till task completion” (p. 592). This final reviewing/revising 

phase was similar to the revision phase in their previous work, which was operationalized as 
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the last revision(s) away from the point of inscription, whose termination was not followed by 

further production at the end of the text (Xu, 2018). 

Similarly, Hall et al. (2022) manually distinguished explicit pre-planning and post-draft 

revisions. However, as the participants were asked to write spontaneously or plan on paper 

(depending on the condition), no planning other than writing the title was identified. Post-

draft revisions were defined as text production after the writer decided to close their essay. 

Here the authors included both textual factors (whether the writer used words like ‘to 

conclude’ or ‘finally’), as well as process factors (whether the writer moved away from the 

leading edge to start making edits from ‘top-to-bottom’). This notion of top-to-bottom 

revision was also mentioned in Xu & Xia (2021)’s definition above, focusing on the cursor being 

moved to the beginning. Baaijen et al. (2012), first isolated the initial prewriting/planning 

phase as part of the task instruction since they asked the participants to plan their text with 

pen and paper for five minutes. Next they distinguished the other phases manually. First they 

categorized continued planning on the computer separately from text production. Then, they 

manually annotated text produced during an initial draft from text produced during a revision 

draft or the final revision phase (Baaijen et al., 2012). The final revision phase was defined as 

the revisions made outside the final paragraph, when the writer was working on the final 

paragraph (similarly to Hall et al.’s, 2022, focus on textual factors). In total, this final revision 

phase was identified in 65% of the writing processes. 

The advantage of these function-based approaches is that they might be considered less 

arbitrary than time-based or version-based approaches, as they are directly related to 

functions or dominant writing processes involved. However, as could be seen from these 

examples, the segmentation is usually done based on manual inspection of progress graphs, 

keystroke logs, and replays of the writing process. The rules for manual annotation vary across 

studies often focus on single-session composition processes, and are arguably not always 

easily implemented (interestingly most articles do not mention any coding difficulties or inter-

rater reliability, but see Xu, 2018). Therefore, in the current paper we aim to develop an 

automated function-based segmentation that overcomes these limitations. 

2.5 Going beyond sequential phases 

It is well-known that cognitive processes in writing are non-linear rather than sequential. The 

planning, translating, and reviewing processes are inter-related and interact. Accordingly, 

rather than segmenting the writing process into a specific number of consecutive segments, 

some researchers have also looked at dividing the keystroke log into specific micro-processes 

or activities, where activities can have different lengths and are recurring over time. These 

activities have been related to the cognitive subprocesses of writing and sometimes include 

behavioral metrics rather than cognitive constructs, such as typing versus reading sources. 

Exploring the sequences and combinations of these micro-processes or activities can further 

shed light on the non-linearity of the writing process. 

For example, Kruse (2024) distinguished text production from source-use, based on the 

automated detection of focus shifts away from the written text. Guo et al. (2019) 
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automatically segmented the writing process into three different activities including: text 

production, editing (out of order insertion or deletion), and long pauses (pauses which are 

longer than four times the median pause length thus far). Conijn et al. (2024) further extended 

on the notion of editing by – as argued by the authors – focusing on the full cognitive process 

of making a revision, so for example also including the replacement text after an insertion. 

They used a rule-based algorithm to automatically distinguish revision activities from non-

revision activities based on the number of deletions and the cursor position relative to the 

leading edge. Lo Sardo et al. (2023) also focused on the automatic extraction of sub-cycles of 

planning and translation using edit distances between different versions of the text. 

Specifically, planning or exploration was operationalized as moments where the edit 

difference between the first and last version was larger compared to the edit distances 

between the current version and first and last version combined (larger difference means 

more exploration). Translation in turn was identified when the writer more or less fluidly 

translated their ideas, deterministically reducing the distance between the first and last 

version.  

Other researchers have opted for a broader segmentation, including a wider range of 

activities. For example, Sala-Bubaré et al. (2021) used manual annotation to identify seven 

different types of activities: text production, interaction with sources, editing (surface-level 

revisions), revising (deep-level revisions), reading text written so far, deleting (without 

inserting new text), recursive reformulations (changes at the point of inscription). These 

segmentations were done on top of the content-based segmentation of the different sections 

written as described above. Similarly, De Smedt and colleagues (under review), divided the 

keystroke log into automatically identified segments, including several activities related to 

accessing/reading resources, text production, navigation, and revising (including immediate 

and distant insertions and deletions).  

The advantage of these approaches focusing on microprocesses is that they are more 

detailed and follow more closely the fact that writing is a non-linear process. In addition, these 

types of segmentation are usually well-suited for process mining methods, where the different 

activities can be seen as different ‘states’ and the changes between activities as ‘transitions’ 

(see e.g., De Smedt et al., under review). This type of analysis can also be interpreted in 

function of time, providing a specific focus on the distribution of a particular micro-process. A 

downside of this approach is, however, that by focusing on specific micro-processes there will 

be a lot within and between-writer variation and noise, making it harder to interpret the 

findings in terms of overall writing development or to improve writing instruction. This is also 

why these types of analyses are often supplemented with additional analyses such as 

clustering methods, to aid the interpretation.    

2.6 Current approach 

In this study we aim to develop an automated function-based segmentation of single-session 

processes that, rather than using a micro-approach focusing on a large number of transitions, 

focuses on a macro-approach identifying distinctive transition of the dominant process (e.g., 
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in this case from predominantly writing to predominantly revising), based on keystroke data. 

Such a dominant switch in keystroke dynamics can also be seen as ‘points-of-interest’ as 

referred to by Leijten et al. (2014). In particular, our procedure consists of two steps. First, we 

aim to detect change points in the keystroke data. Thereafter, we aim to automatically select 

the change point that is indicative of the transition or change point from the production of a 

first draft of a text, with a focus on planning and the production of new content, towards a 

second phase in which writers revise and finalize their first (intermediate) draft. The full 

procedure is evaluated using manual coding of a set of process graphs obtained via the 

keystroke logging tool Inputlog. In particular, we aim to answer the following research 

questions: 

1) To what extent is it possible to automatically detect change points in the writing 

process? 

a. To what extent do automatically identified change points overlap with the 

manual annotation of the start of the second phase? 

b. Which variables – inductively identified from human coding – are the best 

predictor(s) to detect change points in writing processes? 

2) To what extent is it possible to automatically select the change point that indicates 

the transition to the second phase? 

3. Method 

3.1 Datasets 

For this study, we used two datasets consisting of keystroke data collected via Inputlog (Leijten 

& Van Waes, 2013). The first dataset came from the project PLanTra (Plain Language for 

Financial Content: Assessing the Impact of Training on Students' Revisions and Readers' 

Comprehension) and the second dataset came from the project LIFT (Improving Pre-university 

Students’ Performance in Academic Synthesis Tasks with Level-up Instructions and Feedback 

Tool). We particularly chose these two datasets as they are representative of different writing 

tasks, which presumably increases the variability in how a second phase might be initiated, 

thus allowing us to test our approach in a broader range of contexts.  

The PLanTra project involved the collection of keystroke data from 47 Dutch-speaking 

university students, writing in English (L2). In a pre-test session, al students were assigned an 

extract of a corporate report dealing with sustainability and were instructed to revise it to 

simplify the text for a lay audience. Subsequently, half of the students received training on 

how to apply plain language principles to sustainability content, while the other half received 

training exclusively on the topic of sustainability. During a post-test session, both groups were 

instructed to revise a second extract of a corporate sustainability report. Not all participants 

participated in both the pre- and post-test, resulting in a total of 88 sessions being logged. A 

more detailed description of the methodology in the PLanTra project can be found in Rossetti 

& Van Waes (2022b). The dataset for the PLanTra project is published in Rossetti & Van Waes 

(2022a). 



 
CONIJN ET AL.  AUTOMATED PROCEDURE TO IDENTIFY AND VISUALIZE PHASES IN WRITING |  346 

 

The LIFT project’ s goal was to provide feedback and instruction to students’ synthesis 

writing in the Netherlands, based on national baseline data. Various types of data were 

gathered to create the baseline including keystroke data. The baseline consists of a large and 

representative sample of 658 students from 43 schools. Participants were upper-secondary 

students from grades 10, 11 and 12. The students wrote multiple texts in two genres 

(argumentative and informative) of source-based writing in Dutch (L1). For the current study, 

a subset of writing processes was selected from the baseline: 40 processes of argumentative 

tasks and 40 processes of informative tasks. The processes selected for the subset cover a 

wide range of performance levels. For details on the methodology of the LIFT project, please 

consult Vandermeulen, De Maeyer, et al. (2020). The dataset for the LIFT project is published 

in Vandermeulen, Van Steendam, et al. (2020). 

3.2 Development of manual annotation criteria 

As a first step in the coding, we built a set of criteria that could be used to identify the change 

point between the initial planning and production of new content, and a second phase in 

which writers revise and finalize their first (intermediate) draft. The initial step in criteria 

development involved an inductive analysis of the writing process, for which we used 

Inputlog’s process graph (Leijten & Van Waes, 2013; see also Figure 1). Inputlog’s process 

graph has been used to aid manual annotations (e.g., Xu & Xia, 2021 as described in the 

introduction). The process graph is a visualization aid that has been used to visualize the 

writing process based on keystroke data. The characteristics shown in the graph is based on 

an extended period of writing process research (E. Lindgren & Sullivan, 2019; Van Waes & 

Schellens, 2003), which allow for inspection and analysis of pausing behavior (Van Hell et al., 

2008), writing fluency (Feltgen & Cislaru, 2025), (non-)linearity (Buschenhenke et al., 2023), 

revisions (E. Lindgren & Sullivan, 2006), and interactions with sources (Tarchi et al., 2023). The 

process graph in particular visualizes five different characteristics of the writing process: (1) 

product development (number of characters in the product so far), (2) process development 

(number of characters produced so far), (3) cursor position (at that moment in time), (4) pause 

distribution and pause length, and (5) interaction with sources.  

Based on Inputlog’s process graph, two researchers independently identified the 

beginning of the second phase on a subset of 24 cases from the PlanTra dataset. After 

discussion, the researchers agreed on three criteria for the annotation. The first criterion was 

the movement of the cursor towards – or close to – the start of the document, indicating that 

the writer had completed a first draft and was prepared for a whole-text reading/revision. The 

researchers also agreed that, when the cursor moved to the start of the text too early in the 

writing process (e.g. in the first quarter the process), or when this movement was fast and 

immediately followed by a repositioning of the cursor to the point of utterance, the cursor 

movement should be disregarded. A second criterion was the deletion of unnecessary 

content, as indicated by a sudden and substantial split between process line and product line. 

In the PlanTra dataset this was often the case when students opted for rewriting a new text 

from scratch and subsequently deleted the assigned text once their new draft was completed. 
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The third criterion was the flattening of the product line, indicating that no substantial content 

was being added anymore (i.e. the first draft was produced). 
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Figure 1. Inputlog process graph, including the five criteria for the second phase. 
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For a detailed description of the criteria, see Table 1. 



 
CONIJN ET AL.  AUTOMATED PROCEDURE TO IDENTIFY AND VISUALIZE PHASES IN WRITING |  350 

 

Table 1. Description of indicators and annotation criteria. 

Indicator Criteria Explanation 

Document length Product line 

flattens 

When the product line flattens at a certain moment, this 

indicates that text production slows down or 

(temporarily) stops while rereading, and (low-level) 

insertions and deletions throughout the text follow up on 

each other, keeping the total length of the text more or 

less constant. So, this change in slope often marks the 

start of revision and rereading during the second phase. 

Distance between 

product and 

process line 

Distance between 

product and 

process line 

increases 

Those writers that prefer rewriting the text by producing 

a new text (and do not revise in the source text itself) 

usually delete the original text at the end of the first 

phase. Some writers also delete the source text 

paragraph by paragraph. In this case, deletions are 

recursive and we take as change point — marking the 

start of the second phase — the end of the last recursive 

movement. Substantial deletions are always represented 

by a considerable drop in document length and, in turn, 

by greater distance between process and product line. 

Relative cursor 

position 

Point of utterance 

changes to start of 

the text 

A moving cursor line towards the beginning of the text 

indicates that the writers' focus is changing from the end 

of the file towards the beginning of the text produced so 

far. Sometimes this happens in longer cycles that follow 

up on each other. This repositioning is often 

characterized by an initial longer reading pause indicating 

the start of a reflective revision phase (i.e. a second 

phase). 

Length of source 

use 

Interaction with 

sources is 

minimized 

A drop in the interaction with sources often indicates a 

shift in the writers' focus from external documentation to 

the text itself, where revision becomes the central 

activity. 

Pause length Longer pauses 

occur more 

frequently 

At the start and during the second phase writers tend to 

pause longer. We see a change in the pausing pattern in 

which the clusters of short pauses close to the x-axis are 

opened, and longer pause plots higher up in the graph are 

observed. Most of these longer pauses are likely related 

to reading and to evaluating the text produced so far. 

Following the identification of three criteria, the two researchers applied these criteria again 

to the entire PlanTra dataset. The researchers had an initial agreement in 73% of cases, which 

– after discussion – resulted in full agreement. The researchers also observed that the change 
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points were usually preceded or followed by longer pauses (marking the beginning of a 

reflective reading/revision second phase) and by a change in the pattern of the interaction 

with sources (usually source use was minimized, indicating that external content was less 

frequently used once their first draft was completed). Based on these observations, the pause 

length and interaction with sources were added as supplementary criteria. During this stage 

of criteria development, the researchers also decided that the pause preceding the second 

phase would also be included, as this long pause could already indicate the start of a 

reading/revision phase, even though no external edits or actions are visible yet. The detailed 

description of the five criteria is shown in Table 1. 

In the next stage, the two researchers recoded the same subset (n = 24) of the PLanTra 

process graphs using the new descriptions of the five criteria. Here, the researchers agreed in 

83% of cases, and reached agreement on 100% of cases following discussion. In addition, this 

second round of coding confirmed that pause length and interaction with sources (i.e. the 

newly added criteria) were relevant for the identification of change points, especially when 

no clear change point was found using the first three indicators. Interestingly, for 75% of 

process graphs, the researchers identified more than one criterion that indicated the change 

point.  Moreover, these criteria also allowed the researchers to identify writing processes (six 

out of the total) that did not involve a second phase.  

 

3.3 Manual annotation 

In the third round, three researchers applied the five criteria to the process graphs from the 

LIFT dataset. We believed that the indicators could be translated from the PlanTra to the LIFT 

dataset, as the datasets shared the characteristics of being both single-session source-based 

writing tasks (cf. Future work infra). For the informative texts, all three authors agreed in 68% 

of cases. Pairwise consensus (i.e. between two annotators) was reached on average in 78% of 

cases, but full agreement on all process graphs was reached after discussion. For the 

argumentative texts, agreement between the three researchers increased to 81% (87% for 

pairwise consensus), possibly as a result of coding practice. Full agreement was again reached 

following discussion. In addition, the three researchers also reached agreement on 24 process 

graphs that did not show a second phase. In total, there are 6 (PlanTra) + 24 (LIFT) = 30 sessions 

without an annotated change point, and 82 (PlanTra) + 56 (LIFT) = 138 sessions with an 

annotated change point. 

3.4 Automated change point detection 

The automated identification of the change point included three steps: (1) pre-processing, (2) 

automated detection of change points in the keystroke data, (2) automated selection of the 

change point between the first and second writing phase. All steps were performed using R, 

and the code can be found at https://github.com/RConijn/KeystrokeChangePoints. 

For the pre-processing, we first translated the five criteria as close as possible into 

indicators that could be retrieved from the keystroke data. Specifically, for criterion 1 (product 

https://github.com/RConijn/KeystrokeChangePoints
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line flattens) the product line was measured using the product length, relative to the final 

product length; for criterion 2 (distance between product and process line increases) the 

distance between the product and process line was measured using the difference between 

the number of characters produced and the product length; for criterion 3 (point of utterance 

changes to start of the text) the relative position was calculated by the cursor location, divided 

by the product length; for criterion 4 (interaction with sources is minimized) the length of 

source use was calculated by the log cumulative sum of the time the writer spent in sources 

outside the main document; and finally for criterion 5 (longer pauses occur more frequently) 

pause length was measured using the cumulative mean of pauses, where pauses were log-

transformed and trimmed to the 99% percentile. There was a low to moderate correlation 

between the criteria, ranging from |r| = 0.01 to 0.43. The strongest correlations were 

observed between criterion 1 and 4 (r = -0.43, p < 0.001) and criterion 1 and 2 (r = 0.41, p < 

0.001).  

For the change point detection algorithm, the keystroke data needed to be transformed 

into a time series that provided a value for each of the five indicators per x seconds. Given the 

fact that keystroke data can be relatively noisy, with quick jumps back and forth in the text, 

we decided to summarize the log file in multiple ways: per 1, 5, and 10 seconds. This was done 

to determine which timeframe would most effectively get rid of this noise, without 

overgeneralizing too much. In addition, given the fact that the start of the writing process is 

often messy, and usually not of interest for the detection of writing phases, we summarized 

the full writing process as well as the writing process with the first 10% of the time excluded 

(no trimming, versus 10% trimming). This resulted in a total of 3 (time) * 2 (trimming) = 6 

different time series.  

After the pre-processing, we first automatically identified change points in the keystroke 

data, based on each of the five indicators. For example, for the first indicator, one might see 

an increase in product length (steep product line), followed by a relative stable product length 

(product line flattens). A large change in the slope of the product length would then be 

indicated as a change point. The change points were identified using a Bayesian ensemble 

change-detection algorithm for time series, called the Bayesian Estimator of Abrupt change, 

Seasonality, and Trend (BEAST) from the Rpackage ‘Rbeast’ (Hu et al., 2021; Zhao et al., 2013, 

2019). BEAST is a statistical algorithm that breaks a time series Y(t) into trends, seasonal 

variability, abrupt changes, and noise. It is an ensemble algorithm, which means that it 

combines multiple weaker models into one stronger model, using Bayesian model averaging. 

In addition, given that it is a Bayesian algorithm, rather than providing a point estimate for the 

change points, BEAST estimates the probability of the change points, and provides a credible 

interval for the location of the change points. For more information on the BEAST algorithm, 

see Zhao et al. (2019). 

For the current problem, seasonal variability was not modeled because keystroke data do 

not exhibit periodic patterns (such as regular cycles seen in weather data, like daily or annual 

fluctuations). This resulted in the following model of the keystroke time series: 

𝑌(𝑡) = 𝑇(𝜃𝑡) + ɛ 
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where T is the term for the trend component, which is modeled as a piecewise linear function 

with an unknown number of change points. Here, 𝜃𝑡  specifies the number and location of the 

change points in the trend component, and ε is the Gaussian random error term N(0, δ2) with 

an unknown variance δ2. The posterior probability distribution of 𝜃𝑡  and δ2 are simulated using 

Markov Chain Monte Carlo (MCMC) sampling. For more information on the Bayesian MCMC 

scheme used, see Zhao et al. (2019). In our analysis, we opted for the default MCMC sampling 

settings, using three parallel chains with 8000 samples each. The first 1500 samples per chain 

were discarded as burn-in, and only every 5th sample was retained (thinning factor = 5). 

Weakly informative priors were used for the trend estimations 𝑇, with trend orders limited to 

0 (flat) or 1 (linear), and the number of changepoints bounded between 0 and the maximum 

number of changepoints to be estimated. A non-informative uniform prior was used for the 

precision (i.e. the inverse variance: 1/δ2). Model convergence was checked manually using 

trace plots for a subset of the models. In addition, robustness of the changepoints was further 

enforced by using only changepoints with a high probability and a narrow credible interval 

when selecting the final changepoint of interest (for details see below). This approach has 

been previously proven as a useful way to eliminate false change points (J. Li et al., 2022).  

The BEAST algorithm was run for each participant, on each of the six time series, for each of 

the five indicators (univariate models), with a varying amount of maximum change points to 

be estimated (1, 3, 5, 10, or 20). The minimum distance between two consecutive change 

points was set to 10 seconds. In addition to the univariate models, multivariate models were 

estimated, with the first three indicators combined. However, it should be noted that these 

multivariate models are for experimental use only and still under development (see Rbeast 

documentation). The BEAST algorithm was evaluated in two ways. First, the goodness-of-fit of 

the algorithm was determined using the adjusted R2 (only available for the univariate models). 

Second, we identified whether the manual annotated change point was among one of the 

BEAST-detected change points or fell into the 95% credible interval of the BEAST-detected 

change points.  

Thereafter, the best performing BEAST algorithm was selected for each of the indicators. 

As these algorithms provided multiple change points for the indicators (often close to the set 

value of the maximum number of change points), we still needed to identify which of the 

change points would most likely be the change point of interest. To select the final change 

point, a rule-based algorithm was used, including several overarching rules. The change point 

should be after 1/3rd of the process; the majority of the document needs to be written (70%); 

the change point should have a high probability (>70%); and the change point should have a 

relatively narrow credible interval (< 60 seconds). In addition to the general rules, several 

indicator-specific rules were used, based on the increase or decrease in the intercept or slope 

of the indicator, following the manual annotation rules (top 3 flattest product line, that is slope 

of the segment close to 0; top 3 largest abrupt change in distance product versus process line; 

top 3 largest abrupt change in cursor location). Based on the final set of change point 

candidates left, a rule-based algorithm was created to pick the final change point (as shown 

in the results section). 
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4. Results 

4.1 Automated detection of change points 

The BEAST algorithm was used to determine the change points for each of the five indicators 

for all sessions. The full results of all estimated change points overlaying Inputlog’s process 

graph (including the different summarization methods and trimming) can be obtained from 

the interactive Shiny application: https://rianneconijn.shinyapps.io/PhaseAnalysis/. It was 

found that trimming versus no trimming had limited effects on the final results. As expected, 

higher-level aggregation (per 5 or 10 seconds), resulted in slightly higher accuracy, compared 

to aggregation per 1 second, with limited difference between aggregation per 5 or 10 seconds. 

Therefore, below we only report the results on the models summarized per 5 seconds, without 

trimming. 

A sample of the estimated change points for the first indicator, document length, can be 

found in Figure 2. In this sample, it can be seen that out of the five maximum change points, 

all five change points were estimated for all four participants. Three of the four change points 

are relatively accurate: three of the change points are relatively close (participant 1, 3, and 4), 

and two of those fall within the 95% credible interval (participant 1 and 4). For participant 

two, a maximum of five change points seem too little (note that only four change points are 

identified here in the algorithm), or the indicator (document length) might have been 

suboptimal to identify this change point. 

https://rianneconijn.shinyapps.io/PhaseAnalysis/
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Figure 2. Estimated change points for document length (indicator 1) using the log file summarized per 5 

seconds, with no trimming, and 5 maximum breakpoints. Results are shown for a subset of 4 
participants (all from the LIFT dataset). 

Note. Results for the other indicators, log file summarizations, and participants, can be obtained from 
https://rianneconijn.shinyapps.io/PhaseAnalysis/. 

The algorithms were evaluated based on goodness-of-fit as well as the overlap with the 

manual annotated change point (that is, whether the indicated change point overlapped with 

the manual annotation). An overview of all findings can be found in   

https://rianneconijn.shinyapps.io/PhaseAnalysis/
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Table 2. The Shiny dashboard allowed us to further explore and evaluate the algorithm's 

identification of change points at the case level. For the goodness-of-fit we found that when 

more change points were estimated, the models fit the data better. The distance between the 

product/process indicator resulted in the best models, with an average adjusted R2 of 0.97-

0.99 across all participants, regardless of the number of change points used. The length of 

source use shows similar high model fit, which is probably due to the fact that there was 

limited source use, resulting in a relatively flat curve, which was easy to predict by the model. 

The opposite is happening for the relative position, which showed the lowest model fit. For 

models with a single change point, the model does not seem to capture all fluctuations in the 

relative position, resulting in an average adjusted R2 of 0.64. This adjusted R2 increased to 0.96 

for ten change points.  

For the number of change points overlapping with the manual annotation, we see that 

one change point is not enough to correspond with the manual annotation (accuracies ranging 

from 0-11%, with one exception for relative position of 23%). We − not surprisingly − found 

that when we increased the maximum number of change points, there was also a higher 

chance that the manual annotated change point was amongst them, resulting in the highest 

accuracies for the models with 20 as the maximum number of change points. The model for 

the relative position indicator proved to be the most accurate model: in 70% of the cases, the 

manual annotated change point was exactly the same as one of the 20 suggested change 

points. For 71% of the cases the credible intervals of the change points included the manual 

annotated change point. Also the model with a maximum of 5 change points already scores 

above 50%. After the model for relative position, the document length and distance 

product/process indicators proved to be the best models. The length of source use and mean 

pause length proved to be insufficient indicators to detect the manually annotated change 

point, with correct change points only in 0-1% of the cases. 
  



357 | JOURNAL OF WRITING RESEARCH 

 

Table 2. Accuracies of the univariate change point detection using BEAST  

Indicator Maximum 

number 

of change 

points 

Correct 

change 

point 

(%) 

Correct 

change 

point 

(%) 

within 

95% CI 

Median 

difference 

(sec) 

95% CI 

difference 

(sec) 

Mean 

marginal 

likelihood 

Mean adjusted 

R2 

Document 

length 

1 10.9 14.5 425 [0;2182] -570 0.929 

3 12.3 18.1 195 [0;1146] -396 0.961 

5 23.2 33.3 38 [0;676] -163 0.985 

10 25.4 42.8 15 [0;395] 77 0.993 

20 26.1 44.9 10 [0;183] 205 0.995 

Distance 

product/ 

process 

1 6.5 8.0 532 [0;2756] -446 0.972 

3 13.8 17.4 185 [0;1319] -182 0.990 

5 21.0 27.5 35 [0;720] 105 0.995 

10 23.9 34.1 20 [0;493] 371 0.996 

20 24.6 37.7 12 [0;277] 463 0.996 

Relative 

position 

1 22.5 22.5 370 [0;2228] -1115 0.637 

3 44.2 44.2 25 [0;1244] -951 0.797 

5 55.1 55.1 0 [0;573] -736 0.904 

10 64.5 68.1 0 [0;380] -433 0.964 

20 70.3 71.0 0 [0;183] -229 0.976 

Length of 

source use 

1 0.0 0.0 1455 [796;2441] -264 0.941 

3 0.0 7.9 982 [42;1959] 866 0.988 

5 0.0 9.5 600 [45;1880] 2396 0.994 

10 0.0 6.5 418 [42;3140] 3247 0.994 

20 0.0 5.8 452 [12;2508] 3255 0.994 

Mean 

pause 

length 

1 0.0 0.0 1445 [396;3473] -747 0.849 

3 0.0 0.0 1165 [175;2752] -537 0.921 

5 0.0 5.1 705 [25;2215] -332 0.954 

10 0.7 13.0 400 [7;1781] -195 0.980 

20 1.4 17.4 285 [5;1781] -165 0.966 

Note. Accuracies are provided for the change point closest to the manual annotation. CI = Credible 
interval. 

This might indicate that the document length and distance product/process do not add much 

to the relative position indicator. However, it should be noted that the 95% credible interval 

of the difference between the predicted and manually annotated change point is much 

smaller. This indicates that although the multivariate algorithm does not necessarily pick the 

exact correct change point, it seems to be consistently closer to the actual change point, with 

the 95% credible interval being as narrow as between 0 (perfect overlap) and 36 seconds for 

the maximum of 20 change points. 
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Table 3. Accuracies of the multivariate change point detection using BEAST 

Indicator Maximum 

number 

of change 

points 

Correct 

change 

point 

(%) 

Correct 

change 

point 

(%) 

within 

95% CI 

Median 

difference 

(sec) 

95% CI 

difference 

(sec) 

Mean 

marginal 

likelihood 

Document length, 

Distance product/ 

process, &  

Relative position 

1 11.7 13.9 495 [0;2373] -2765 

3 31.4 36.5 35 [0;951] -2358 

5 45.7 50.7 5 [0;429] -1801 

10 57.2 68.1 0 [0;81] -1014 

20 66.4 77.4 0 [0;36] -292 

Note. Accuracies are provided for the change point closest to the manual annotation. CI = Credible 
interval. Adjusted R2 not available for this experimental multivariate analysis. 

To further identify if similar change points were selected by the different univariate and 

multivariate models, we examined the overlap between the detected changepoints, as shown 

in   
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Table 4. Note that for clarity we only report the models with 10 maximum changepoints here. 

The results indicate that the models identified some overlapping change points, with overlap 

ranging from 17% to 30%. Among the univariate models, the relative position indicator 

appeared to detect more distinct change points compared to the document length and 

distance product/process indicators. As expected, the multivariate model showed the greatest 

overlap with each of the univariate models. 

To conclude, we see that the length of source use model fits the data well but shows little 

information for predicting the change point. Relative position, followed by document length 

and distance product/process show to be more promising indicators, but each indicator 

seemed to point towards different change points (with some overlap). The multivariate model 

did not seem to outperform the relative position univariate model. Finally, we see that 

increasing the maximum number of change points largely improves the models. However, 

with more change points, it also becomes harder to pick the change point of interest. 

Therefore, the next section looks into selecting the actual change point. 
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Table 4. Overlap between the detected change points per indicator 

  Percentage of overlapping* change points 

Indicator Mean (SD) 

change 

points 

detected 

Document 

length 

Distance 

product/ 

process 

Relative 

position 

Document length, 

Distance product/ 

process,  & 

Relative position 

Document length 9.5 (1.1) - 0.25 0.17 0.28 

Distance product/ 

process 

8.7 (2.0)  - 0.18 0.30 

Relative position 9.2 (1.7)   - 0.29 

Document length, 

Distance product/ 

process,  & 

Relative position 

9.9 (0.7)    - 

Note. *Overlap is considered when the change point falls within the credible interval or within 10 seconds 
of the other change point.  Values are provided for the model with 10 maximum change points. 

4.2 Automated selection of change point 

In the next step, based on all the change point candidates identified, we aimed to select the 

change point that indicates the transition to the second phase (i.e., revision). Based on the 

outcomes of the first stage, we selected the first three indicators (document length, distance 

product/process, and relative position). As the multivariate models are experimental, we only 

used the change points detected by the three univariate models. Further, we selected a 

maximum of 10 change points per indicator, to avoid having too many change point 

candidates, while still retaining reasonable accuracy.  

First, four overarching rules were applied as detailed in the methods section to filter the 

change point candidates. Thereafter, change points that were considered overlapping (that is, 

change points that were within 10 seconds from each other or within the credible interval) 

were combined into one change point. After this initial filtering step, on average 4.8 (SD = 2.0, 

Min = 1, Max = 9) change point candidates were left per participant. Finally, a rule-based 

approach was used to select the final change point, including whether more than one indicator 

showed this change  
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Figure 3. Rules to select the final change point among change point candidates.  

(CP = change point) 

point, and whether a drop in cursor location was shown (for the full rules see Figure 3). An 

overview of the selected change point for each session (compared to the manual annotated 

change point) can be obtained from: 

 https://rianneconijn.shinyapps.io/PhaseAnalysis/.  

The overall accuracy is low: Only in 31% of the sessions the selected change point is the 

same as the manual annotated change point. In addition, we see that some of the selected 

change points are only slightly off (36% correct within 10 seconds of the annotated change 

point, and 49% correct within 60 seconds). The accuracy did not seem to depend on session 

characteristics: although longer sessions showed somewhat lower accuracy in the overlap 

between the manual and selected changepoint, this was not found significant. The total 

number of characters typed and the total number of characters in the final product also did 

not influence the accuracy. For some writing sessions, the selected change point is far away 

from the annotated change point (e.g., in 27% of the cases the difference is larger than 5 

minutes). A closer inspection into the erroneously predicted sessions showed a variety of 

reasons (see Figure 4 for a subset of sessions with low accuracy). For example, some of the 

authors (e.g., session 82) revised ‘backwards’, where the cursor started at the end of the text, 

and slowly moved upwards to the beginning. This slight change of cursor location is not 

detected by the algorithm. Another source of difficulty included sessions where the writer 

showed more than one phase in which they revised the first draft. The manual annotation 

guidelines detailed that in this case, the start of the first revision cycle needs to be selected. 

However, this was not always done by the algorithm: when the algorithm detected multiple 

cycles, sometimes either the first (e.g., session 77) or the second (e.g., session 135) was 

selected, which did not match the manual annotation.  

 

https://rianneconijn.shinyapps.io/PhaseAnalysis/
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Figure 4. Selected change points versus manual annotated change point. Results are shown for a subset 
of 4 participants (all from the PlanTra dataset) showing low accuracy. 

Note. Only the estimated breakpoints are shown that are left after the initial filtering step. Results for 
the other participants can be obtained from: https://rianneconijn.shinyapps.io/PhaseAnalysis/. 

 

Finally, some sessions showed a very late manual annotated change point (e.g., session 55), 

where almost nothing happened after the change point, making it hard for the algorithm to 

detect a change in one of the indicators, hence resulting in the selection of a change point 

earlier on in the process. 

4.3 No second phase present 

In 30 of the sessions, no second (revision) phase was present, according to the manual 

annotation. As further proof of concept, we are interested to see how the change point 

detection algorithm performs in these cases. First, it was found that for almost all (29/30) of 

the sessions, at least one change point was identified after the initial filtering step. On average 

slightly less change point candidates were left compared to the sessions with a manually 

annotated second phase (M = 3.0, SD = 1.3, Min = 1, Max = 6 change point candidates left). 

This indicates that even though there is no final revision phase present, still some important 

change point candidates are identified. For all but one of the sessions, at least one change 

https://rianneconijn.shinyapps.io/PhaseAnalysis/
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point was related to indicator 1 (document length), while indicators 2 and 3 were less present 

(14/30 and 12/30 sessions, respectively). After running a decision tree with 10-fold cross-

validation, these characteristics also showed up to be the main indicators: If at least one of 

the change points was related to indicator 3 (cursor position), there was a high chance of a 

second phase. In addition, if there was no change point related to indicator 3, but there were 

four or more change points detected, there was still a high change of a second phase.  

5. Discussion 

Previous work has used different ways of segmenting writing processes, to be able to analyze 

the temporal organization of the writing process. In this contribution, we distinguished four 

types of segmentation approaches: time-based, content-based, version-based, and function-

based. We argue that the first three can be arbitrary, where the approach often focuses on 

the researcher’s intuition rather than the writer’s intent. The function-based approaches 

might be more promising, as they are more related to the (underlying cognitive) functions or 

the dominant writing sub processes involved. However, function-based approaches require 

time-intensive manual annotation. Therefore, in this paper, we aimed to develop an 

automated segmentation of writing processes that focuses on a distinctive transition in the 

dominant writing processes. The BEAST algorithm (Zhao et al., 2019) was used to 

automatically detect change points within keystroke data obtained from two different 

datasets (Rossetti & Van Waes, 2022b; Vandermeulen, De Maeyer, et al., 2020). A variety of 

change points were detected based on five indicators from the keystroke data: document 

length, distance between product and process, relative position, length of source use, and 

mean pause length. Thereafter, a rule-based approach was applied to select one change point 

which would be indicative of a shift from the first draft of the text to a second phase in which 

the writer revises and finalizes their first (intermediate) draft. The results of both steps are 

discussed below. 

5.1 Automated detection of change points 

First, it was found that all models showed high goodness-of-fit, indicating that the observed 

values are close to the expected values of the models. This shows that the time-series 

decomposition into trends, abrupt changes, and noise fit the keystroke data well. Intuitively, 

as the models became more complex (that is, a higher number of maximum change points 

was allowed), the model fit increased. The overlap with the manually annotated change point 

differed substantially per indicator: length of source use and mean pause length showed to be 

useless for detecting the manual annotated change point, while the relative cursor position 

showed to be the most promising indicator.  

The fact that the length of source use was less useful might be explained by the fact that 

the interaction with sources was very limited in the current datasets, which might have 

resulted in the algorithm not being able to detect a substantial change in the length of source 

use. In the manual annotation, source use was often seen as an additional indicator, indicating 

that it might not be the best indicator for a univariate model. An alternative reason for the 
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low accuracy of the source use indicator could be that the algorithm looks into a specific point 

in time where the length of source use changes, while the manual annotators merely looked 

for an overarching pattern of source use. Hence, the length of source use might be better used 

to identify a time period where the shift to the second phase should take place, rather than a 

specific point in time. Future work should look into datasets with more extensive source use 

as well as focusing on a time range to test these hypotheses. 

For the mean pause length the low accuracy might also be due to the fact that the pauses 

were often used as an additional indicator, rather than a stand-alone one. In addition, a longer 

pause might be indicative to various other activities rather than reading and evaluating the 

text produced so far, hence not necessarily be related to the start of a second phase. Pauses 

could also indicate other activities, such as reading sources, time off-task, planning for 

sentence production, irrelated to the start of a second phase (Medimorec & Risko, 2017). 

Future work should look into the added value of using eye-tracking to get a better indicator 

for reading and evaluation of the text.  

Overall, document length, distance between product and process, and relative position, 

showed to have reasonable to high overlap with the manual annotated change point. 

Moreover, these indicators showed distinct change points indicating it might be useful to 

consider multiple measures simultaneously. However, interestingly the (experimental) 

multivariate model did not prove to outperform the univariate models. Models with a larger 

number of maximum change points were shown to have a higher accuracy in terms of the 

overlap with the manual annotated change point. However, this also means that it becomes 

more difficult to select the correct change point amongst the candidates, hinting at a trade-

off between accuracy and interpretability. This further stressed the importance of evaluating 

both based on model fit as well as interpretability, in this case measured as overlap with 

human annotation.  

5.2 Automated selection of change points 

Given the amount of identified change point candidates, the next step of the analysis focused 

on selecting the correct change point overlapping the manual annotated change point. A 

combination of overarching filters and a rule-based model was used. Combined this resulted 

in relatively low accuracy: only 31% of the change points could be correctly identified. For 49% 

of the sessions, the selected change point was within 60 seconds of the manual annotated 

change point. So, for more than half of the sessions, the algorithm was unable to properly 

select the right candidate. This stresses the complexity of finding one specific change point. 

Manual inspection showed that there are quite some irregularities in the writing process that 

might be selected as change point candidate by the model. Some of the more common errors 

(e.g., the algorithm not picking up on writers revising backwards through their text), could be 

added to the rule-based algorithm. However, there is a trade-off between having an extensive 

set of rules (hence higher accuracy), versus interpretability and generalizability of the model 

(also known as ‘the principle of parsimony’). Applying more rules will make the model harder 

to interpret for humans, and might result in overfitting of the data, which would reduce 
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generalizability. Accordingly, we did not further specify the rules. Future work could look into 

machine learned algorithms to identify (a) whether a change point is present, and (b) which 

of the candidates is the correct change point, with a larger sample size allowing for a test-train 

split and cross-validation to counter overfitting. 

Finally, it should be noted that the manual annotators also showed difficulties in selecting 

the starting point of the second phase, which is a common issue in annotating keystroke data 

(Conijn et al., 2021; E. Lindgren et al., 2019). One might question whether the manual 

annotation correctly represents the ground truth. An alternative method would be to let the 

writers themselves indicate the change in phase post-hoc, which might be used to further train 

the model. Similarly, the writer might indicate a change in phase concurrently, closely 

resembling writer-based versioning. A tailored user interface, for example using specific tabs 

to separate phases of the writing process could help here (e.g., see the planner tool in Li et al., 

2024). However, for writer-based versioning, the writer needs to be aware of these changes 

in processes, and for concurrent detection even be able to immediately identify such a change. 

In addition, identifying changes concurrently will influence the (mouse and) keystroke data, 

resulting in changes that might be more easily noticeable by an algorithm and hence might 

generalize less well across sessions without writer-indicated change points. 

5.3 Limitations & Future work 

This study is obviously limited by the specific type of algorithm and pre-processing chosen to 

automatically select the change point. Other algorithms could have resulted in higher 

accuracies. The advantage of using the BEAST algorithm is the fact that it is an ensemble 

algorithm, which combines multiple weaker models into one (Zhao et al., 2019). Experimental 

evidence has shown that ensemble algorithms outperform single-best-model approaches 

(Hastie et al., 2009). In addition, the model also outputs the probability of each detected 

change point, which was consequently used in filtering the change points. Finally, the 

algorithm explicitly models the uncertainty, by providing 95% credible intervals around the 

detected change point, which arguably works well for complex and noisy data such as 

keystroke data.  

Of course, some improvements to the algorithm are possible. Additional features could 

have been passed to the BEAST algorithm or alternative rules could have been applied to 

select the final change point. For example, eye-tracking could have been included to more 

accurately identify sustained reading of the text written-so-far (as detailed above). Natural 

Language Processing could have been applied to more accurately detect if the majority of the 

text has been written e.g., by identifying whether a final concluding paragraph has been 

written or when the semantics do not change considerably anymore (e.g., see Tian et al., 

2024). Finally, rather than allowing the change point to be possible at every 1 (or 5 or 10) 

seconds, it might have been worth it to constrain the location of the change point to previously 

studied boundaries in writing processes, such as after revision events (Conijn et al., 2024), 

after a break in linearity (Buschenhenke et al., 2023), or after a P-burst (Baaijen et al., 2012).  
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Further, some of the current indicators are based on characteristics of the final product, 

as they were relative to the final product length, or the total number of pauses. In this way, 

the analysis could not be used to provide real-time segmentation of the writing process. 

Hence, the algorithm cannot be used for real-time writing process interventions. Other 

metrics, such as text length relative to the amount of text produced so far, or the plain (log) 

cumulative number of insertions or deletions would have allowed for this real-time 

processing. However, it should be noted that it already proved difficult to identify change 

points at the end of the writing process, making it arguably more difficult to identify change 

points concurrently. In fact, the BEAST algorithm has lower robustness in identifying change 

points close to the end of a sequence, indicating that real-time segmentation of writing 

process would be difficult. Robust real-time segmentation might be necessarily done with a 

delay (e.g., a switch might only be noticed after x minutes) or might require alternative 

algorithms. Future work should examine to what extent the current approach – albeit with 

new indicators – would allow for real-time segmentation.   

In addition, one could argue that the current macro approach focuses too much on the 

segmentation being discrete and sequential, which does not correspond with the complex 

non-linear nature of cognitive writing processes. Although our approach does give insight into 

recursiveness in revision, e.g., multiple revision phases, an activity-based segmentation (as in 

Sala-Bubaré et al., 2021 for example), could have resulted in a finer-grained insight into the 

recursiveness of the writing process. However, here, we were not interested in a large number 

of transitions, but rather focused on distinctive transitions in the writing process. We believe 

that these could be used as points-of-interest (Leijten et al., 2014), which could be further 

explored in future work.  

Finally, although already two distinct genres of writing were selected (source-based 

writing and text simplification), it is unknown how well the algorithm generalizes to other 

datasets of the same genre or even other genres and contexts with less revising behavior, as 

for example found in novice writers. It is also uncertain whether algorithm performance varies 

across datasets, genres, or contexts. Future work should include additional datasets to better 

assess the algorithm's generalizability. For an overview on writing development of novice 

writers, see e.g., Beard et al. (2009) or Miller et al. (2018) or for examples of more complex 

writing and professional non-linear revising behavior, see e.g., multi-session writing, 

Buschenhenke et al. (2023) or Leijten et al. (2014). 

5.4 Implications 

The paper has several implications for writing research and practice, focusing on the change 

points themselves (as points-of-interest) or on the segments between the points of interest. 

First of all, the points of interest – in particular as shown on the phase analysis dashboard – 

can provide additional feedback to learners on their writing process, which may be used as an 

additional feature in a process report to reflect upon (Vandermeulen et al., 2022; 

Vandermeulen, Leijten, et al., 2020). In addition, this type of visualization can be used to 

improve the efficiency and accuracy of manual annotations of points-of-interest in keystroke 
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data. It should be noted here that the change points identified were directly related to 

indicators used in the manual annotation of revision phase, so they might not be applicable 

to other types of points-of-interest such as the end of an initial planning phase, or a distinctive 

shift in (non-)linearity. Yet, the indicators are relatively general (e.g., document length, cursor 

position) and focus on the main points presented in Inputlog’s process graph, indicating their 

utility for writing practice and research. Future work should identify to what extent it is 

possible (and useful) to label the change points, and whether different variables could label 

these change points more accurately. 

Second, one could use the change points to segment the writing process in different 

phases, allowing for analyses across all the different phases, rather than aggregating keystroke 

data over the full writing process (e.g., Xu & Xia, 2021). In addition, one could remove a specific 

phase, if it is out of interest for the specific analysis (e.g., removing the final revision phase as 

in Baaijen et al., 2012). Finally, one could test whether the type of processing is different in 

different segments, focusing for example on different pause patterns across the segments (cf. 

Roeser et al., 2025). 

6. Conclusion 

In this study we tried to explore the possibilities to automatically determine change points in 

writing processes, and use this as a basis to identify the change point that indicates the 

transition between the first (dominant focus on writing) and the second phase (dominant 

focus on rereading and revision) of a writing process. Our results showed that the BEAST 

algorithm was useful in detecting change points in keystroke data. In particular, relative 

position, followed by document length and distance product/process showed to be promising 

indicators to determine change points. Unfortunately, our results showed that it is still difficult 

to identify the change point connected to a second phase. Yet, we contend that our approach 

to identify change points is still useful to explore a specific subset of points-of-interest within 

the writing process or to divide the writing processes in specific segments with their own 

functionality.  
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