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Abstract: Understanding the temporal organization of writing is key to studying writing processes.
Existing methods to segment writing into phases often rely on arbitrary rules, extensive manual
annotation, or focus on numerous transitions. This study aimed to develop an automated
segmentation method to detect distinctive transition in the dominant writing process, particularly
the transition from first draft to revision. For this, keystroke data (source-based L1 writing (N = 80)
and text simplification in L2 (N = 88)) were manually annotated. The BEAST algorithm was applied
for Bayesian change point detection, based on five characteristics derived from the annotation
criteria: (1) percentage of the final text written so far, (2) distance between typed and remaining
characters, (3) relative cursor position, (4) source use, and (5) pause timings. The first three features
proved most effective in identifying change points. A rule-based approach was further applied to
select one final change point, which resulted in mediocre accuracy ranging from 31% exact
agreement to 49% agreement within 60 seconds. To conclude, the BEAST algorithm is useful in
detecting a variety of change points in writing processes, yet connecting them to meaningful
phases is still quite complex.
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1. Introduction

In the analysis of writing, the temporal organization of the writing process and sub
processes — such as planning, drafting, revising, or consulting external sources — has
only received limited attention. Van den Bergh & Rijlaarsdam (2001) were among the
first researchers to clearly explain and demonstrate the importance of a more time-based
approach to writing process research. Their focus was motivated by the fact that the task
situation gradually changes as the writing process evolves, with the introduction and
revision of new ideas becoming progressively less frequent as writers move towards a
final version (Lo Sardo et al., 2023). This also has an effect on the amount of text added
and/or revised over time, especially when a composition task is divided over multiple
sessions (Bowen & Van Waes, 2020). Additionally, the temporal organization of writing
is influenced by the writers' profiles, i.e. depending on the writer’s preferences and
experiences, writers will distribute cognitive activities differently (Van den Bergh &
Rijlaarsdam, 2001; Van Waes & Schellens, 2003). Examining the temporal organization
of the writing process can also provide key insights into self-regulation mechanisms (Saqr
et al., 2021) and metacognitive strategies (Huang & Zhang, 2022). Furthermore, certain
temporal distributions of tasks in the writing process are also predictive of text quality
levels (Xu, 2018).

An often used method to examine the temporal organization of the writing process is
to divide the writing process into phases, stages, segments, or episodes (e.g., Leijten et
al., 2014; Sala-Bubari et al., 2021; Xu & Xia, 2021). It is important to note here that this
temporal approach to segmenting the writing process does not imply that composing
texts is a linear process. Despite the continuous non-linearity that characterizes writing,
a temporal approach adds an important perspective to the analysis of writing processes.
This perspective is exemplified in the study by Xu & Xia (2021). They showed that overall
writing time in second language writing is not affected by writing expertise. However,
when the writing process was divided into three traditional sequential phases:
prewriting/planning, formulation, and revising/reviewing, differences were found:
Novice writers mainly focus on formulation, limiting the other phases, while more
proficient writers distribute the time spent on the different phases more equally.

For examining the temporal organization of writing, logging tools (e.g., keystroke
logging and/or eye-tracking) are key as they allow for the collection of temporal data on
mental activities that might not be (fully) available through introspection (Torrance &
Conijn, 2024). Although a variety of approaches exist into segmenting keystroke log data,
the operationalizations are often relatively arbitrary (e.g., segment the writing into three
segments of equal duration) or require extensive manual labelling (S. Li & Yu, 2024).
Accordingly, in this study we aim to develop an automated segmentation of writing
processes that focuses on a distinctive transition in the dominant writing processes, based
on keystroke data.
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2. Related work

The operationalization of time-based segmentation approaches differs across studies,
with respect to the level of focus and the level of automatization. In addition, some
approaches are more suitable for multi-session processes, while others are solely built for
single-session processes. In the following, we distinguish four different types of
segmentation approaches: time-based, content-based, version-based, and function-
based.

2.1  Time-based segmentation

As stated above, Van den Bergh and Rijlaarsdam (2001) were among the first researchers
who stressed the importance of a temporal approach to studying the writing process. In
their thinking-aloud study, they modeled the occurrence of cognitive activities
(orientation and planning activities versus formulating activities) as a function of the time
elapsed since the start of the task. Including the total time elapsed so far or temporal
location has subsequently been the approach in a variety of keystroke logging studies
(see e.g., Zhang et al., 2016).

Rather than using time directly into modelling the writing process, time-based
approaches have been used to segment the keystroke log into several time-based
segments. The most common approach is to divide the process into three segments of
equal length (see e.g., De Lario et al., 2006; Tarchi et al., 2023), arguably because it can
be easily referred to as the ‘start’, ‘middle’, and ‘end’ of the writing process. Other studies
have looked into more segments, including five (Leijten et al., 2019) and ten equal time
intervals (Van Waes & Leijten, 2015). In the five intervals study, the authors used the first
interval as a proxy for the initial planning phase, and the last interval as a proxy for the
second draft, revision phase (Leijten et al., 2019).

The main advantage of this interval approach is that it is intuitive and easy to
automate. Inputlog (Leijten & Van Waes, 2013), a commonly used program to collect
keystroke data, already provides a default option to split the writing process into intervals
of equal length, where the number of segments can be defined by the user. Moreover,
the approach facilitates the comparison of writing processes of different lengths. A
downside of this approach is that time segments of different total lengths are compared.
In addition, there is no clear consensus or rationale for an ‘optimal’ number of segments,
and the question is if such an optimum would even exist. Regardless of the number of
chosen segments, the distinction can be considered quite arbitrary, as it does not take
into account the different activities performed within the writing process (e.g., a segment
might consist of no keystrokes), different functions (e.g., whether the dominant process
was drafting an outline or making post-draft revision), or the content written (cf. Xu &
Xia, 2021).
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2.2 Content-based segmentation

Rather than segmenting the writing process based on time, others have segmented the
process based on the content written. Similar to including the total time elapsed so far,
the total amount of characters produced so far can be used as a function to model the
temporal aspect of the keystroke log. Some content-based segmentation approaches go
beyond the number of characters produced towards the actual content produced. For
example, Sala-Bubarit et al. (2021) manually distinguished different sections of an
extended abstract in doctoral writing: title, introduction, objective, method, results,
discussion, and sources. Segments that included two or more sections were labeled as
global. These segments were then connected to activities in the writing process. Content-
based segmentation is more common in analyses focusing on the writing product
(linguistic analyses) rather than the writing process. For example, Crossley et al. (2022)
used a content-based segmentation, in which they extracted different argumentation
elements, such as primary claim, final claim, counterclaim, rebuttal, data, and
concluding summary. Here they connected the incidence of these argumentative features
with writing quality.

The advantage of these content-based approaches is that it connects the writing
process directly with the writing product. In addition, some of the segmentation might be
done automatically by using natural language processing approaches. However, the
disadvantage of these approaches is that they are very time-intensive if done manually.
Both automated (with NLP) and manual approaches are especially difficult if many
revisions are made during the writing process, as it is not always clear what writer is
writing about if only part of a sentence is written and then revised (cf. Mahlow et al.,
2022).

2.3 Version-based segmentation

Related to content-based approaches are the version-based segmentations. These types
of segmentations explicitly distinguish between different versions created by
intermediately saving the text-produced-so far or by ending/starting a new writing
session. A version has been defined as: “a point in the production history of a text that is
deemed relevant based on particular criteria, a version is thus a specific text-produced-
so-far” (Mahlow et al., 2022, p. 450). A version can be initiated by the writer or by the
system (auto-save). For example, some studies have used automated versioning built into
existing editors (see e.g., Lo Sardo et al., 2023). Here the authors used two different types
of text editors, with Google docs creating a version every minute (if any writing activity
took place), and WeWrite which created a new version every 3 minutes.

In writer-based versioning, the writer actively saves a version themselves (see e.g.,
the study on Wikipedia revision by Daxenberger & Gurevych, 2013). For example,
Leijten et al. (2014) segmented the writing process of a single author in professional
communication into five different segments, based on the five separate writing sessions
the author employed. In a comparable way, Bowen & Van Waes (2020) created segments
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based on different sessions when students worked on their essays. In this qualitative study
two essays were finalized after seven sessions; and one essay after five sessions.
Interestingly, the version-based approaches was not the endpoint in both studies: Leijten
et al. (2014) further divided the sessions into beginning, middle, and end of the writing
process (time-based segmentation), while Bowen & Van Waes (2020) decided to further
segment the sessions using a time-based approach based on the temporal ordering of the
revisions. Rather than subdividing the sessions, Buschenhenke et al. (2023) chose to
combine sessions, using clustering. In their study, 386 writing sessions were identified in
the writing of a complete novel, which were subsequently combined into nine clusters
based on the non-linearity characteristics within the sessions.

The advantage of focusing on saved versions or sessions is that it does not rely on
keystroke logging, hence it can be implemented relatively easily. A downside of
automated versioning is that automated versioning does not reflect the writer’s process
management or their decision to segment it. Further, both automated versioning and
writer-based versioning might not necessarily fit the researcher’s aim. In addition, the
writing sessions might differ substantially in total duration of the sessions and in the
content created within the sessions. For example, Buschenhenke et al. (2023) found
sessions ranging from a couple of minutes to over three hours. For some of the sessions,
the time between sessions was very short, indicating that some of these sessions might
be combined. In addition, some of the longer sessions included substantial idle time (over
30 minutes), indicating that these sessions might be split. The fact that merely
distinguishing the writing process based on sessions is not always enough is also visible
from the fact that these sessions have been further subdivided (Van Waes et al., 2014),
grouped (Bowen & Van Waes, 2020; Buschenhenke et al., 2023).

Accordingly, some researchers did not follow the authors’ versioning, but focused on
researcher-based versioning created post-hoc, often based on some additional process
characteristics obtained from keystroke logging. For example, Cislaru & Olive (2018)
identified the start of a new version based on a long pause, while Mahlow (2015)
automatically defined versions based on changes in the production. A new version was
identified if the writer switched from continuous writing to continuous deletion or
insertion. The latter could already be seen as a more function-based approach,
distinguishing between text production and revision.

2.4  Function-based segmentation

Function-based segmentations indicate a segmentation based on a dominant (cognitive)
writing process or activity. A common distinction is between the three most-cited writing
(sub)processes planning, translating, and reviewing (Flower & Hayes, 1981). This is often
based on manual annotation, where process visualizations such as Inputlog’s process
graph (Leijten & Van Waes, 2013), are utilized as a resource to aid the annotation. For
an example of the process graph, see Figure 1. Xu & Xia (2021) manually divided the
writing process of L2 writers into these three subprocesses. Prewriting/planning was
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defined as: “the temporal span from the beginning of a writing event upon topic
assignment till the commencement of continuous textual output, featured by the flat
product line (the solid line) following the beginning of a writing event” (p. 592; see also
Figure 1 and related process graph description). Formulation was defined as “the process
of continuous textual output, featured by steeply climbing process and product lines” (p.
592). Finally, reviewing/revising was defined as “the process temporally following the
formulation process, with the cursor position (the dotted line) being moved to the
beginning part of the text for reviewing and revising till task completion” (p. 592). This
final reviewing/revising phase was similar to the revision phase in their previous work,
which was operationalized as the last revision(s) away from the point of inscription,
whose termination was not followed by further production at the end of the text (Xu,
2018).

Similarly, Hall et al. (2022) manually distinguished explicit pre-planning and post-
draft revisions. However, as the participants were asked to write spontaneously or plan
on paper (depending on the condition), no planning other than writing the title was
identified. Post-draft revisions were defined as text production after the writer decided to
close their essay. Here the authors included both textual factors (whether the writer used
words like ‘to conclude’ or “finally’), as well as process factors (whether the writer moved
away from the leading edge to start making edits from ‘top-to-bottom’). This notion of
top-to-bottom revision was also mentioned in Xu & Xia (2021)’s definition above,
focusing on the cursor being moved to the beginning. Baaijen et al. (2012), first isolated
the initial prewriting/planning phase as part of the task instruction since they asked the
participants to plan their text with pen and paper for five minutes. Next they distinguished
the other phases manually. First they categorized continued planning on the computer
separately from text production. Then, they manually annotated text produced during an
initial draft from text produced during a revision draft or the final revision phase (Baaijen
et al., 2012). The final revision phase was defined as the revisions made outside the final
paragraph, when the writer was working on the final paragraph (similarly to Hall et al.’s,
2022, focus on textual factors). In total, this final revision phase was identified in 65% of
the writing processes.

The advantage of these function-based approaches is that they might be considered
less arbitrary than time-based or version-based approaches, as they are directly related
to functions or dominant writing processes involved. However, as could be seen from
these examples, the segmentation is usually done based on manual inspection of progress
graphs, keystroke logs, and replays of the writing process. The rules for manual
annotation vary across studies often focus on single-session composition processes, and
are arguably not always easily implemented (interestingly most articles do not mention
any coding difficulties or inter-rater reliability, but see Xu, 2018). Therefore, in the current
paper we aim to develop an automated function-based segmentation that overcomes
these limitations.
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2.5 Going beyond sequential phases

It is well-known that cognitive processes in writing are non-linear rather than sequential.
The planning, translating, and reviewing processes are inter-related and interact.
Accordingly, rather than segmenting the writing process into a specific number of
consecutive segments, some researchers have also looked at dividing the keystroke log
into specific micro-processes or activities, where activities can have different lengths and
are recurring over time. These activities have been related to the cognitive subprocesses
of writing and sometimes include behavioral metrics rather than cognitive constructs,
such as typing versus reading sources. Exploring the sequences and combinations of these
micro-processes or activities can further shed light on the non-linearity of the writing
process.

For example, Kruse (2024) distinguished text production from source-use, based on
the automated detection of focus shifts away from the written text. Guo et al. (2019)
automatically segmented the writing process into three different activities including: text
production, editing (out of order insertion or deletion), and long pauses (pauses which
are longer than four times the median pause length thus far). Conijn et al. (2024) further
extended on the notion of editing by — as argued by the authors — focusing on the full
cognitive process of making a revision, so for example also including the replacement
text after an insertion. They used a rule-based algorithm to automatically distinguish
revision activities from non-revision activities based on the number of deletions and the
cursor position relative to the leading edge. Lo Sardo et al. (2023) also focused on the
automatic extraction of sub-cycles of planning and translation using edit distances
between different versions of the text. Specifically, planning or exploration was
operationalized as moments where the edit difference between the first and last version
was larger compared to the edit distances between the current version and first and last
version combined (larger difference means more exploration). Translation in turn was
identified when the writer more or less fluidly translated their ideas, deterministically
reducing the distance between the first and last version.

Other researchers have opted for a broader segmentation, including a wider range of
activities. For example, Sala-Bubari et al. (2021) used manual annotation to identify
seven different types of activities: text production, interaction with sources, editing
(surface-level revisions), revising (deep-level revisions), reading text written so far,
deleting (without inserting new text), recursive reformulations (changes at the point of
inscription). These segmentations were done on top of the content-based segmentation
of the different sections written as described above. Similarly, De Smedt and colleagues
(under review), divided the keystroke log into automatically identified segments,
including several activities related to accessing/reading resources, text production,
navigation, and revising (including immediate and distant insertions and deletions).

The advantage of these approaches focusing on microprocesses is that they are more
detailed and follow more closely the fact that writing is a non-linear process. In addition,
these types of segmentation are usually well-suited for process mining methods, where
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the different activities can be seen as different ‘states’ and the changes between activities
as ‘transitions’ (see e.g., De Smedt et al., under review). This type of analysis can also be
interpreted in function of time, providing a specific focus on the distribution of a
particular micro-process. A downside of this approach is, however, that by focusing on
specific micro-processes there will be a lot within and between-writer variation and
noise, making it harder to interpret the findings in terms of overall writing development
or to improve writing instruction. This is also why these types of analyses are often
supplemented with additional analyses such as clustering methods, to aid the
interpretation.

2.6  Current approach

In this study we aim to develop an automated function-based segmentation of single-
session processes that, rather than using a micro-approach focusing on a large number
of transitions, focuses on a macro-approach identifying distinctive transition of the
dominant process (e.g., in this case from predominantly writing to predominantly
revising), based on keystroke data. Such a dominant switch in keystroke dynamics can
also be seen as ‘points-of-interest” as referred to by Leijten et al. (2014). In particular, our
procedure consists of two steps. First, we aim to detect change points in the keystroke
data. Thereafter, we aim to automatically select the change point that is indicative of the
transition or change point from the production of a first draft of a text, with a focus on
planning and the production of new content, towards a second phase in which writers
revise and finalize their first (intermediate) draft. The full procedure is evaluated using
manual coding of a set of process graphs obtained via the keystroke logging tool Inputlog.

In particular, we aim to answer the following research questions:
1) To what extent is it possible to automatically detect change points in the writing

process?
a. To what extent do automatically identified change points overlap with
the manual annotation of the start of the second phase?
b. Which variables — inductively identified from human coding — are the
best predictor(s) to detect change points in writing processes?
2) To what extent is it possible to automatically select the change point that
indicates the transition to the second phase?

3. Method

3.1 Datasets

For this study, we used two datasets consisting of keystroke data collected via Inputlog
(Leijten & Van Waes, 2013). The first dataset came from the project PLanTra (Plain
Language for Financial Content: Assessing the Impact of Training on Students' Revisions
and Readers' Comprehension) and the second dataset came from the project LIFT
(Improving Pre-university Students’ Performance in Academic Synthesis Tasks with Level-
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up Instructions and Feedback Tool). We particularly chose these two datasets as they are
representative of different writing tasks, which presumably increases the variability in
how a second phase might be initiated, thus allowing us to test our approach in a broader
range of contexts.

The PLanTra project involved the collection of keystroke data from 47 Dutch-
speaking university students, writing in English (L2). In a pre-test session, al students were
assigned an extract of a corporate report dealing with sustainability and were instructed
to revise it to simplify the text for a lay audience. Subsequently, half of the students
received training on how to apply plain language principles to sustainability content,
while the other half received training exclusively on the topic of sustainability. During a
post-test session, both groups were instructed to revise a second extract of a corporate
sustainability report. Not all participants participated in both the pre- and post-test,
resulting in a total of 88 sessions being logged. A more detailed description of the
methodology in the PLanTra project can be found in Rossetti & Van Waes (2022b). The
dataset for the PLanTra project is published in Rossetti & Van Waes (2022a).

The LIFT project’ s goal was to provide feedback and instruction to students’ synthesis
writing in the Netherlands, based on national baseline data. Various types of data were
gathered to create the baseline including keystroke data. The baseline consists of a large
and representative sample of 658 students from 43 schools. Participants were upper-
secondary students from grades 10, 11 and 12. The students wrote multiple texts in two
genres (argumentative and informative) of source-based writing in Dutch (L1). For the
current study, a subset of writing processes was selected from the baseline: 40 processes
of argumentative tasks and 40 processes of informative tasks. The processes selected for
the subset cover a wide range of performance levels. For details on the methodology of
the LIFT project, please consult Vandermeulen, De Maeyer, et al. (2020). The dataset for
the LIFT project is published in Vandermeulen, Van Steendam, et al. (2020).

3.2 Development of manual annotation criteria

As a first step in the coding, we built a set of criteria that could be used to identify the
change point between the initial planning and production of new content, and a second
phase in which writers revise and finalize their first (intermediate) draft. The initial step
in criteria development involved an inductive analysis of the writing process, for which
we used Inputlog’s process graph (Leijten & Van Waes, 2013; see also Figure 1).
Inputlog’s process graph has been used to aid manual annotations (e.g., Xu & Xia, 2021
as described in the introduction). The process graph is a visualization aid that has been
used to visualize the writing process based on keystroke data. The characteristics shown
in the graph is based on an extended period of writing process research (E. Lindgren &
Sullivan, 2019; Van Waes & Schellens, 2003), which allow for inspection and analysis
of pausing behavior (Van Hell et al., 2008), writing fluency (Feltgen & Cislaru, 2025),
(non-)linearity (Buschenhenke et al., 2023), revisions (E. Lindgren & Sullivan, 2006), and
interactions with sources (Tarchi et al., 2023). The process graph in particular visualizes
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five different characteristics of the writing process: (1) product development (number of
characters in the product so far), (2) process development (number of characters
produced so far), (3) cursor position (at that moment in time), (4) pause distribution and
pause length, and (5) interaction with sources.

Based on Inputlog’s process graph, two researchers independently identified the
beginning of the second phase on a subset of 24 cases from the PlanTra dataset. After
discussion, the researchers agreed on three criteria for the annotation. The first criterion
was the movement of the cursor towards — or close to — the start of the document,
indicating that the writer had completed a first draft and was prepared for a whole-text
reading/revision. The researchers also agreed that, when the cursor moved to the start of
the text too early in the writing process (e.g. in the first quarter the process), or when this
movement was fast and immediately followed by a repositioning of the cursor to the
point of utterance, the cursor movement should be disregarded. A second criterion was
the deletion of unnecessary content, as indicated by a sudden and substantial split
between process line and product line. In the PlanTra dataset this was often the case
when students opted for rewriting a new text from scratch and subsequently deleted the
assigned text once their new draft was completed. The third criterion was the flattening
of the product line, indicating that no substantial content was being added anymore (i.e.
the first draft was produced). For a detailed description of the criteria, see Table 1.
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Figure 1. Inputlog process graph, including the five criteria for the second phase.
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Table 1. Description of indicators and annotation criteria.

Indicator

Criteria

Explanation

Document length

Distance between
product and
process line

Relative cursor
position

Length of source
use

Pause length

Product line
flattens

Distance
between product
and process line

increases

Point of utterance
changes to start
of the text

Interaction with
sources is

minimized

Longer pauses
occur more

frequently

When the product line flattens at a certain moment,
this indicates that text production slows down or
(temporarily) stops while rereading, and (low-level)
insertions and deletions throughout the text follow up
on each other, keeping the total length of the text
more or less constant. So, this change in slope often
marks the start of revision and rereading during the
second phase.

Those writers that prefer rewriting the text by
producing a new text (and do not revise in the source
text itself) usually delete the original text at the end of
the first phase. Some writers also delete the source text
paragraph by paragraph. In this case, deletions are
recursive and we take as change point — marking the
start of the second phase — the end of the last
recursive movement. Substantial deletions are always
represented by a considerable drop in document
length and, in turn, by greater distance between
process and product line.

A moving cursor line towards the beginning of the text
indicates that the writers' focus is changing from the
end of the file towards the beginning of the text
produced so far. Sometimes this happens in longer
cycles that follow up on each other. This repositioning
is often characterized by an initial longer reading
pause indicating the start of a reflective revision phase
(i.e. a second phase).

A drop in the interaction with sources often indicates a
shift in the writers' focus from external documentation
to the text itself, where revision becomes the central
activity.

At the start and during the second phase writers tend
to pause longer. We see a change in the pausing
pattern in which the clusters of short pauses close to
the x-axis are opened, and longer pause plots higher
up in the graph are observed. Most of these longer
pauses are likely related to reading and to evaluating
the text produced so far.
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Following the identification of three criteria, the two researchers applied these criteria
again to the entire PlanTra dataset. The researchers had an initial agreement in 73% of
cases, which — after discussion —resulted in full agreement. The researchers also observed
that the change points were usually preceded or followed by longer pauses (marking the
beginning of a reflective reading/revision second phase) and by a change in the pattern
of the interaction with sources (usually source use was minimized, indicating that
external content was less frequently used once their first draft was completed). Based on
these observations, the pause length and interaction with sources were added as
supplementary criteria. During this stage of criteria development, the researchers also
decided that the pause preceding the second phase would also be included, as this long
pause could already indicate the start of a reading/revision phase, even though no
external edits or actions are visible yet. The detailed description of the five criteria is
shown in Table 1.

In the next stage, the two researchers recoded the same subset (n = 24) of the PLanTra
process graphs using the new descriptions of the five criteria. Here, the researchers
agreed in 83% of cases, and reached agreement on 100% of cases following discussion.
In addition, this second round of coding confirmed that pause length and interaction with
sources (i.e. the newly added criteria) were relevant for the identification of change
points, especially when no clear change point was found using the first three indicators.
Interestingly, for 75% of process graphs, the researchers identified more than one
criterion that indicated the change point. Moreover, these criteria also allowed the
researchers to identify writing processes (six out of the total) that did not involve a second
phase.

3.3 Manual annotation

In the third round, three researchers applied the five criteria to the process graphs from
the LIFT dataset. We believed that the indicators could be translated from the PlanTra to
the LIFT dataset, as the datasets shared the characteristics of being both single-session
source-based writing tasks (cf. Future work infra). For the informative texts, all three
authors agreed in 68% of cases. Pairwise consensus (i.e. between two annotators) was
reached on average in 78% of cases, but full agreement on all process graphs was
reached after discussion. For the argumentative texts, agreement between the three
researchers increased to 81% (87% for pairwise consensus), possibly as a result of coding
practice. Full agreement was again reached following discussion. In addition, the three
researchers also reached agreement on 24 process graphs that did not show a second
phase. In total, there are 6 (PlanTra) + 24 (LIFT) = 30 sessions without an annotated
change point, and 82 (PlanTra) + 56 (LIFT) = 138 sessions with an annotated change
point.
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3.4 Automated change point detection

The automated identification of the change point included three steps: (1) pre-processing,
(2) automated detection of change points in the keystroke data, (2) automated selection
of the change point between the first and second writing phase. All steps were performed
using R, and the code can be found at: https://github.com/RConijn/Keystroke
ChangePoints.

For the pre-processing, we first translated the five criteria as close as possible into
indicators that could be retrieved from the keystroke data. Specifically, for criterion 1
(product line flattens) the product line was measured using the product length, relative
to the final product length; for criterion 2 (distance between product and process line
increases) the distance between the product and process line was measured using the
difference between the number of characters produced and the product length; for
criterion 3 (point of utterance changes to start of the text) the relative position was
calculated by the cursor location, divided by the product length; for criterion 4
(interaction with sources is minimized) the length of source use was calculated by the
log cumulative sum of the time the writer spent in sources outside the main document;
and finally for criterion 5 (longer pauses occur more frequently) pause length was
measured using the cumulative mean of pauses, where pauses were log-transformed and
trimmed to the 99% percentile. There was a low to moderate correlation between the
criteria, ranging from Irl = 0.01 to 0.43. The strongest correlations were observed
between criterion 1 and 4 (r = -0.43, p < 0.001) and criterion 1 and 2 (r = 0.41, p <
0.001).

For the change point detection algorithm, the keystroke data needed to be
transformed into a time series that provided a value for each of the five indicators per x
seconds. Given the fact that keystroke data can be relatively noisy, with quick jumps
back and forth in the text, we decided to summarize the log file in multiple ways: per 1,
5, and 10 seconds. This was done to determine which timeframe would most effectively
get rid of this noise, without overgeneralizing too much. In addition, given the fact that
the start of the writing process is often messy, and usually not of interest for the detection
of writing phases, we summarized the full writing process as well as the writing process
with the first 10% of the time excluded (no trimming, versus 10% trimming). This resulted
in a total of 3 (time) * 2 (trimming) = 6 different time series.

After the pre-processing, we first automatically identified change points in the
keystroke data, based on each of the five indicators. For example, for the first indicator,
one might see an increase in product length (steep product line), followed by a relative
stable product length (product line flattens). A large change in the slope of the product
length would then be indicated as a change point. The change points were identified
using a Bayesian ensemble change-detection algorithm for time series, called the
Bayesian Estimator of Abrupt change, Seasonality, and Trend (BEAST) from the Rpackage
‘Rbeast’ (Hu et al., 2021; Zhao et al., 2013, 2019). BEAST is a statistical algorithm that
breaks a time series Y(t) into trends, seasonal variability, abrupt changes, and noise. It is
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an ensemble algorithm, which means that it combines multiple weaker models into one
stronger model, using Bayesian model averaging. In addition, given that it is a Bayesian
algorithm, rather than providing a point estimate for the change points, BEAST estimates
the probability of the change points, and provides a credible interval for the location of
the change points. For more information on the BEAST algorithm, see Zhao et al. (2019).

For the current problem, seasonal variability was not modeled because keystroke data
do not exhibit periodic patterns (such as regular cycles seen in weather data, like daily
or annual fluctuations). This resulted in the following model of the keystroke time series:

Y()=T(6,) +¢

where T is the term for the trend component, which is modeled as a piecewise linear
function with an unknown number of change points. Here, 6, specifies the number and
location of the change points in the trend component, and ¢ is the Gaussian random error
term N(0, 6%) with an unknown variance &%. The posterior probability distribution of 6,
and 62 are simulated using Markov Chain Monte Carlo (MCMC) sampling. For more
information on the Bayesian MCMC scheme used, see Zhao et al. (2019). In our analysis,
we opted for the default MCMC sampling settings, using three parallel chains with 8000
samples each. The first 1500 samples per chain were discarded as burn-in, and only
every 5th sample was retained (thinning factor = 5). Weakly informative priors were used
for the trend estimations T, with trend orders limited to O (flat) or 1 (linear), and the
number of changepoints bounded between 0 and the maximum number of changepoints
to be estimated. A non-informative uniform prior was used for the precision (i.e. the
inverse variance: 1/6%). Model convergence was checked manually using trace plots for
a subset of the models. In addition, robustness of the changepoints was further enforced
by using only changepoints with a high probability and a narrow credible interval when
selecting the final changepoint of interest (for details see below). This approach has been
previously proven as a useful way to eliminate false change points (J. Li et al., 2022).
The BEAST algorithm was run for each participant, on each of the six time series, for each
of the five indicators (univariate models), with a varying amount of maximum change
points to be estimated (1, 3, 5, 10, or 20). The minimum distance between two
consecutive change points was set to 10 seconds. In addition to the univariate models,
multivariate models were estimated, with the first three indicators combined. However,
it should be noted that these multivariate models are for experimental use only and still
under development (see Rbeast documentation). The BEAST algorithm was evaluated in
two ways. First, the goodness-of-fit of the algorithm was determined using the adjusted
R2 (only available for the univariate models). Second, we identified whether the manual
annotated change point was among one of the BEAST-detected change points or fell into
the 95% credible interval of the BEAST-detected change points.

Thereafter, the best performing BEAST algorithm was selected for each of the
indicators. As these algorithms provided multiple change points for the indicators (often
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close to the set value of the maximum number of change points), we still needed to
identify which of the change points would most likely be the change point of interest. To
select the final change point, a rule-based algorithm was used, including several
overarching rules. The change point should be after 1/3rd of the process; the majority of
the document needs to be written (70%); the change point should have a high probability
(>70%); and the change point should have a relatively narrow credible interval (< 60
seconds). In addition to the general rules, several indicator-specific rules were used,
based on the increase or decrease in the intercept or slope of the indicator, following the
manual annotation rules (top 3 flattest product line, that is slope of the segment close to
0; top 3 largest abrupt change in distance product versus process line; top 3 largest abrupt
change in cursor location). Based on the final set of change point candidates left, a rule-
based algorithm was created to pick the final change point (as shown in the results
section).

4. Results

4.1  Automated detection of change points

The BEAST algorithm was used to determine the change points for each of the five
indicators for all sessions. The full results of all estimated change points overlaying
Inputlog’s process graph (including the different summarization methods and trimming)
can be obtained from the interactive Shiny application:
https://rianneconijn.shinyapps.io/PhaseAnalysis/. It was found that trimming versus no
trimming had limited effects on the final results. As expected, higher-level aggregation
(per 5 or 10 seconds), resulted in slightly higher accuracy, compared to aggregation per
1 second, with limited difference between aggregation per 5 or 10 seconds. Therefore,
below we only report the results on the models summarized per 5 seconds, without
trimming.

A sample of the estimated change points for the first indicator, document length, can
be found in Figure 2. In this sample, it can be seen that out of the five maximum change
points, all five change points were estimated for all four participants. Three of the four
change points are relatively accurate: three of the change points are relatively close
(participant 1, 3, and 4), and two of those fall within the 95% credible interval (participant
1 and 4). For participant two, a maximum of five change points seem too little (note that
only four change points are identified here in the algorithm), or the indicator (document
length) might have been suboptimal to identify this change point.
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Figure 2. Estimated change points for document length (indicator 1) using the log file
summarized per 5 seconds, with no trimming, and 5 maximum breakpoints.
Results are shown for a subset of 4 participants (all from the LIFT dataset).

Note. Results for the other indicators, log file summarizations, and participants,
can be obtained from https://rianneconijn.shinyapps.io/PhaseAnalysis/.

The algorithms were evaluated based on goodness-of-fit as well as the overlap with the
manual annotated change point (that is, whether the indicated change point overlapped
with the manual annotation). An overview of all findings can be found in Table 2. The
Shiny dashboard allowed us to further explore and evaluate the algorithm's identification
of change points at the case level. For the goodness-of-fit we found that when more
change points were estimated, the models fit the data better. The distance between the
product/process indicator resulted in the best models, with an average adjusted R? of
0.97-0.99 across all participants, regardless of the number of change points used. The
length of source use shows similar high model fit, which is probably due to the fact that
there was limited source use, resulting in a relatively flat curve, which was easy to predict
by the model. The opposite is happening for the relative position, which showed the
lowest model fit. For models with a single change point, the model does not seem to

Process
Product
Position
RevisionStart

EstimatedBreakpoint
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Table 2. Accuracies of the univariate change point detection using BEAST

Indicator Maximum  Correct Correct  Median 95% Cl Mean Mean
number  change change difference  difference  marginal adjusted R?
of change  point point (sec) (sec) likelihood
points (%) (%)
within
95%
Cl

Document 1 10.9 14.5 425 [0;2182] -570 0.929
length 3 12.3 18.1 195 [0;1146] -396 0.961
23.2 33.3 38 [0;676] -163 0.985

10 25.4 42.8 15 [0;395] 77 0.993

20 26.1 44.9 10 [0;183] 205 0.995

Distance 1 6.5 8.0 532 [0;2756] -446 0.972
product/ 3 13.8 17.4 185 [0;1319] -182 0.990
process 21.0 27.5 35 [0;720] 105 0.995
10 23.9 34.1 20 [0;493] 371 0.996

20 24.6 37.7 12 [0,277] 463 0.996

Relative 1 22.5 22.5 370 [0;2228] -1115 0.637
position 3 44.2 44.2 25 [0;1244] -951 0.797
55.1 55.1 0 [0;573] -736 0.904

10 64.5 68.1 0 [0;380] -433 0.964

20 70.3 71.0 0 [0;183] -229 0.976

Length of 1 0.0 0.0 1455 [796;2441] -264 0.941
source use 3 0.0 7.9 982 [42;1959] 866 0.988
0.0 9.5 600 [45;1880] 2396 0.994

10 0.0 6.5 418 [42;3140] 3247 0.994

20 0.0 5.8 452 [12;2508] 3255 0.994

Mean 1 0.0 0.0 1445 [396;3473] -747 0.849
pause 3 0.0 0.0 1165 [175;2752] -537 0.921
length 0.0 5.1 705 [25;2215] -332 0.954
10 0.7 13.0 400 [7;1781] -195 0.980

20 1.4 17.4 285 [5;1781] -165 0.966

Note. Accuracies are provided for the change point closest to the manual annotation. Cl = Credible

interval.

capture all fluctuations in the relative position, resulting in an average adjusted R? of
0.64. This adjusted R? increased to 0.96 for ten change points.

For the number of change points overlapping with the manual annotation, we see
that one change point is not enough to correspond with the manual annotation
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(accuracies ranging from 0-11%, with one exception for relative position of 23%). We —
not surprisingly — found that when we increased the maximum number of change points,
there was also a higher chance that the manual annotated change point was amongst
them, resulting in the highest accuracies for the models with 20 as the maximum number
of change points. The model for the relative position indicator proved to be the most
accurate model: in 70% of the cases, the manual annotated change point was exactly the
same as one of the 20 suggested change points. For 71% of the cases the credible intervals
of the change points included the manual annotated change point. Also the model with
a maximum of 5 change points already scores above 50%. After the model for relative
position, the document length and distance product/process indicators proved to be the
best models. The length of source use and mean pause length proved to be insufficient
indicators to detect the manually annotated change point, with correct change points
only in 0-1% of the cases.

This might indicate that the document length and distance product/process do not
add much to the relative position indicator. However, it should be noted that the 95%
credible interval of the difference between the predicted and manually annotated change
point is much smaller. This indicates that although the multivariate algorithm does not
necessarily pick the exact correct change point, it seems to be consistently closer to the
actual change point, with the 95% credible interval being as narrow as between 0 (perfect
overlap) and 36 seconds for the maximum of 20 change points.

Table 3. Accuracies of the multivariate change point detection using BEAST

Indicator Maximum  Correct Correct Median 95% Cl Mean
number change change difference difference marginal
of change  point point (sec) (sec) likelihood
points (%) (%)

within
95%
Cl

Document length, 1 11.7 13.9 495 [0;2373] -2765

Distance product/ 3 31.4 36.5 35 [0;951] -2358

process, & 5 45.7 50.7 5 [0;429] -1801

Relative position 10 57.2 68.1 0 [0;81] -1014
20 66.4 77.4 0 [0;36] -292

Note. Accuracies are provided for the change point closest to the manual annotation. Cl = Credible
interval. Adjusted R? not available for this experimental multivariate analysis.

To further identify if similar change points were selected by the different univariate and
multivariate models, we examined the overlap between the detected changepoints, as
shown in Table 4. Note that for clarity we only report the models with 10 maximum
changepoints here. The results indicate that the models identified some overlapping
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change points, with overlap ranging from 17% to 30%. Among the univariate models,
the relative position indicator appeared to detect more distinct change points compared
to the document length and distance product/process indicators. As expected, the
multivariate model showed the greatest overlap with each of the univariate models.

To conclude, we see that the length of source use model fits the data well but shows
little information for predicting the change point. Relative position, followed by
document length and distance product/process show to be more promising indicators,
but each indicator seemed to point towards different change points (with some overlap).
The multivariate model did not seem to outperform the relative position univariate model.
Finally, we see that increasing the maximum number of change points largely improves
the models. However, with more change points, it also becomes harder to pick the
change point of interest. Therefore, the next section looks into selecting the actual change
point.

Table 4. Overlap between the detected change points per indicator

Percentage of overlapping* change points

Indicator Mean (SD)  Document Distance Relative Document
change length product/ position length, Distance
points process product/ process,

detected & Relative
position

Document length 9.5(1.1) - 0.25 0.17 0.28

Distance product/ 8.7 (2.0) - 0.18 0.30

process

Relative position 9.2(1.7) - 0.29

Document 9.9 (0.7) -

length, Distance
product/ process,
& Relative

position

Note. *Overlap is considered when the change point falls within the credible interval or within 10
seconds of the other change point. Values are provided for the model with 10 maximum change
points.

4.2  Automated selection of change point

In the next step, based on all the change point candidates identified, we aimed to select
the change point that indicates the transition to the second phase (i.e., revision). Based
on the outcomes of the first stage, we selected the first three indicators (document length,
distance product/process, and relative position). As the multivariate models are experi-
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Figure 3. Rules to select the final change point among change point candidates.
(CP = change point).

mental, we only used the change points detected by the three univariate models. Further,
we selected a maximum of 10 change points per indicator, to avoid having too many
change point candidates, while still retaining reasonable accuracy.

First, four overarching rules were applied as detailed in the methods section to filter
the change point candidates. Thereafter, change points that were considered overlapping
(that is, change points that were within 10 seconds from each other or within the credible
interval) were combined into one change point. After this initial filtering step, on average
4.8 (SD = 2.0, Min = 1, Max = 9) change point candidates were left per participant.
Finally, a rule-based approach was used to select the final change point, including
whether more than one indicator showed this change point, and whether a drop in cursor
location was shown (for the full rules see Figure 3. An overview of the selected change
point for each session (compared to the manual annotated change point) can be obtained
from: https://rianneconijn.shinyapps.io/PhaseAnalysis/.

The overall accuracy is low: Only in 31% of the sessions the selected change point
is the same as the manual annotated change point. In addition, we see that some of the
selected change points are only slightly off (36% correct within 10 seconds of the
annotated change point, and 49% correct within 60 seconds). The accuracy did not seem
to depend on session characteristics: although longer sessions showed somewhat lower
accuracy in the overlap between the manual and selected changepoint, this was not
found significant. The total number of characters typed and the total number of characters
in the final product also did not influence the accuracy. For some writing sessions, the
selected change point is far away from the annotated change point (e.g., in 27% of the
cases the difference is larger than 5 minutes). A closer inspection into the erroneously
predicted sessions showed a variety of reasons (see Figure 4 for a subset of sessions with
low accuracy). For example, some of the authors (e.g., session 82) revised ‘backwards’,
where the cursor started at the end of the text, and slowly moved upwards to the
beginning. This slight change of cursor location is not detected by the algorithm. Another
source of difficulty included sessions where the writer showed more than one phase in
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which they revised the first draft. The manual annotation guidelines detailed that in this
case, the start of the first revision cycle needs to be selected. However, this was not
always done by the algorithm: when the algorithm detected multiple cycles, sometimes
either the first (e.g., session 77) or the second (e.g., session 135) was selected, which did
not match the manual annotation.
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Figure 4. Selected change points versus manual annotated change point.
Results are shown for a subset of 4 participants (all from the PlanTra dataset)
showing low accuracy.

Note. Only the estimated breakpoints are shown that are left after the initial filtering
step. Results for the other participants can be obtained from:
https://rianneconijn.shinyapps.io/PhaseAnalysis/.

Finally, some sessions showed a very late manual annotated change point (e.g., session
55), where almost nothing happened after the change point, making it hard for the
algorithm to detect a change in one of the indicators, hence resulting in the selection of
a change point earlier on in the process.

4.3 No second phase present

In 30 of the sessions, no second (revision) phase was present, according to the manual
annotation. As further proof of concept, we are interested to see how the change point

— Process
— Product

- Position

RevisionStart
EstimatedBreakpoints
PickedBreakpoint
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detection algorithm performs in these cases. First, it was found that for almost all (29/30)
of the sessions, at least one change point was identified after the initial filtering step. On
average slightly less change point candidates were left compared to the sessions with a
manually annotated second phase (M = 3.0, SD = 1.3, Min = 1, Max = 6 change point
candidates left). This indicates that even though there is no final revision phase present,
still some important change point candidates are identified. For all but one of the
sessions, at least one change point was related to indicator 1 (document length), while
indicators 2 and 3 were less present (14/30 and 12/30 sessions, respectively). After
running a decision tree with 10-fold cross-validation, these characteristics also showed
up to be the main indicators: If at least one of the change points was related to indicator
3 (cursor position), there was a high chance of a second phase. In addition, if there was
no change point related to indicator 3, but there were four or more change points
detected, there was still a high change of a second phase.

5. Discussion

Previous work has used different ways of segmenting writing processes, to be able to
analyze the temporal organization of the writing process. In this contribution, we
distinguished four types of segmentation approaches: time-based, content-based,
version-based, and function-based. We argue that the first three can be arbitrary, where
the approach often focuses on the researcher’s intuition rather than the writer’s intent.
The function-based approaches might be more promising, as they are more related to the
(underlying cognitive) functions or the dominant writing sub processes involved.
However, function-based approaches require time-intensive manual annotation.
Therefore, in this paper, we aimed to develop an automated segmentation of writing
processes that focuses on a distinctive transition in the dominant writing processes. The
BEAST algorithm (Zhao et al., 2019) was used to automatically detect change points
within keystroke data obtained from two different datasets (Rossetti & Van Waes, 2022b;
Vandermeulen, De Maeyer, et al., 2020). A variety of change points were detected based
on five indicators from the keystroke data: document length, distance between product
and process, relative position, length of source use, and mean pause length. Thereafter,
arule-based approach was applied to select one change point which would be indicative
of a shift from the first draft of the text to a second phase in which the writer revises and
finalizes their first (intermediate) draft. The results of both steps are discussed below.

5.1 Automated detection of change points

First, it was found that all models showed high goodness-of-fit, indicating that the
observed values are close to the expected values of the models. This shows that the time-
series decomposition into trends, abrupt changes, and noise fit the keystroke data well.
Intuitively, as the models became more complex (that is, a higher number of maximum
change points was allowed), the model fit increased. The overlap with the manually
annotated change point differed substantially per indicator: length of source use and
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mean pause length showed to be useless for detecting the manual annotated change
point, while the relative cursor position showed to be the most promising indicator.

The fact that the length of source use was less useful might be explained by the fact

that the interaction with sources was very limited in the current datasets, which might
have resulted in the algorithm not being able to detect a substantial change in the length
of source use. In the manual annotation, source use was often seen as an additional
indicator, indicating that it might not be the best indicator for a univariate model. An
alternative reason for the low accuracy of the source use indicator could be that the
algorithm looks into a specific point in time where the length of source use changes,
while the manual annotators merely looked for an overarching pattern of source use.
Hence, the length of source use might be better used to identify a time period where the
shift to the second phase should take place, rather than a specific point in time. Future
work should look into datasets with more extensive source use as well as focusing on a
time range to test these hypotheses.
For the mean pause length the low accuracy might also be due to the fact that the pauses
were often used as an additional indicator, rather than a stand-alone one. In addition, a
longer pause might be indicative to various other activities rather than reading and
evaluating the text produced so far, hence not necessarily be related to the start of a
second phase. Pauses could also indicate other activities, such as reading sources, time
off-task, planning for sentence production, irrelated to the start of a second phase
(Medimorec & Risko, 2017). Future work should look into the added value of using eye-
tracking to get a better indicator for reading and evaluation of the text.

Overall, document length, distance between product and process, and relative
position, showed to have reasonable to high overlap with the manual annotated change
point. Moreover, these indicators showed distinct change points indicating it might be
useful to consider multiple measures simultaneously. However, interestingly the
(experimental) multivariate model did not prove to outperform the univariate models.
Models with a larger number of maximum change points were shown to have a higher
accuracy in terms of the overlap with the manual annotated change point. However, this
also means that it becomes more difficult to select the correct change point amongst the
candidates, hinting at a trade-off between accuracy and interpretability. This further
stressed the importance of evaluating both based on model fit as well as interpretability,
in this case measured as overlap with human annotation.

5.2 Automated selection of change points

Given the amount of identified change point candidates, the next step of the analysis
focused on selecting the correct change point overlapping the manual annotated change
point. A combination of overarching filters and a rule-based model was used. Combined
this resulted in relatively low accuracy: only 31% of the change points could be correctly
identified. For 49% of the sessions, the selected change point was within 60 seconds of
the manual annotated change point. So, for more than half of the sessions, the algorithm
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was unable to properly select the right candidate. This stresses the complexity of finding
one specific change point. Manual inspection showed that there are quite some
irregularities in the writing process that might be selected as change point candidate by
the model. Some of the more common errors (e.g., the algorithm not picking up on writers
revising backwards through their text), could be added to the rule-based algorithm.
However, there is a trade-off between having an extensive set of rules (hence higher
accuracy), versus interpretability and generalizability of the model (also known as ‘the
principle of parsimony’). Applying more rules will make the model harder to interpret for
humans, and might result in overfitting of the data, which would reduce generalizability.
Accordingly, we did not further specify the rules. Future work could look into machine
learned algorithms to identify (a) whether a change point is present, and (b) which of the
candidates is the correct change point, with a larger sample size allowing for a test-train
split and cross-validation to counter overfitting.

Finally, it should be noted that the manual annotators also showed difficulties in
selecting the starting point of the second phase, which is a common issue in annotating
keystroke data (Conijn et al., 2021; E. Lindgren et al., 2019). One might question whether
the manual annotation correctly represents the ground truth. An alternative method
would be to let the writers themselves indicate the change in phase post-hoc, which
might be used to further train the model. Similarly, the writer might indicate a change in
phase concurrently, closely resembling writer-based versioning. A tailored user interface,
for example using specific tabs to separate phases of the writing process could help here
(e.g., see the planner tool in Li et al., 2024). However, for writer-based versioning, the
writer needs to be aware of these changes in processes, and for concurrent detection
even be able to immediately identify such a change. In addition, identifying changes
concurrently will influence the (mouse and) keystroke data, resulting in changes that
might be more easily noticeable by an algorithm and hence might generalize less well
across sessions without writer-indicated change points.

5.3 Limitations & Future work

This study is obviously limited by the specific type of algorithm and pre-processing
chosen to automatically select the change point. Other algorithms could have resulted in
higher accuracies. The advantage of using the BEAST algorithm is the fact that it is an
ensemble algorithm, which combines multiple weaker models into one (Zhao et al.,
2019). Experimental evidence has shown that ensemble algorithms outperform single-
best-model approaches (Hastie et al., 2009). In addition, the model also outputs the
probability of each detected change point, which was consequently used in filtering the
change points. Finally, the algorithm explicitly models the uncertainty, by providing 95%
credible intervals around the detected change point, which arguably works well for
complex and noisy data such as keystroke data.

Of course, some improvements to the algorithm are possible. Additional features
could have been passed to the BEAST algorithm or alternative rules could have been
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applied to select the final change point. For example, eye-tracking could have been
included to more accurately identify sustained reading of the text written-so-far (as
detailed above). Natural Language Processing could have been applied to more
accurately detect if the majority of the text has been written e.g., by identifying whether
a final concluding paragraph has been written or when the semantics do not change
considerably anymore (e.g., see Tian et al., 2024). Finally, rather than allowing the
change point to be possible at every 1 (or 5 or 10) seconds, it might have been worth it
to constrain the location of the change point to previously studied boundaries in writing
processes, such as after revision events (Conijn et al., 2024), after a break in linearity
(Buschenhenke et al., 2023), or after a P-burst (Baaijen et al., 2012).

Further, some of the current indicators are based on characteristics of the final
product, as they were relative to the final product length, or the total number of pauses.
In this way, the analysis could not be used to provide real-time segmentation of the
writing process. Hence, the algorithm cannot be used for real-time writing process
interventions. Other metrics, such as text length relative to the amount of text produced
so far, or the plain (log) cumulative number of insertions or deletions would have allowed
for this real-time processing. However, it should be noted that it already proved difficult
to identify change points at the end of the writing process, making it arguably more
difficult to identify change points concurrently. In fact, the BEAST algorithm has lower
robustness in identifying change points close to the end of a sequence, indicating that
real-time segmentation of writing process would be difficult. Robust real-time
segmentation might be necessarily done with a delay (e.g., a switch might only be noticed
after x minutes) or might require alternative algorithms. Future work should examine to
what extent the current approach — albeit with new indicators — would allow for real-
time segmentation.

In addition, one could argue that the current macro approach focuses too much on
the segmentation being discrete and sequential, which does not correspond with the
complex non-linear nature of cognitive writing processes. Although our approach does
give insight into recursiveness in revision, e.g., multiple revision phases, an activity-based
segmentation (as in Sala-Bubarii et al., 2021 for example), could have resulted in a finer-
grained insight into the recursiveness of the writing process. However, here, we were not
interested in a large number of transitions, but rather focused on distinctive transitions in
the writing process. We believe that these could be used as points-of-interest (Leijten et
al., 2014), which could be further explored in future work.

Finally, although already two distinct genres of writing were selected (source-based
writing and text simplification), it is unknown how well the algorithm generalizes to other
datasets of the same genre or even other genres and contexts with less revising behavior,
as for example found in novice writers. It is also uncertain whether algorithm
performance varies across datasets, genres, or contexts. Future work should include
additional datasets to better assess the algorithm's generalizability. For an overview on
writing development of novice writers, see e.g., Beard et al. (2009) or Miller et al. (2018)
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or for examples of more complex writing and professional non-linear revising behavior,
see e.g., multi-session writing, Buschenhenke et al. (2023) or Leijten et al. (2014).

5.4  Implications

The paper has several implications for writing research and practice, focusing on the
change points themselves (as points-of-interest) or on the segments between the points
of interest. First of all, the points of interest — in particular as shown on the phase analysis
dashboard — can provide additional feedback to learners on their writing process, which
may be used as an additional feature in a process report to reflect upon (Vandermeulen
et al., 2022; Vandermeulen, Leijten, et al., 2020). In addition, this type of visualization
can be used to improve the efficiency and accuracy of manual annotations of points-of-
interest in keystroke data. It should be noted here that the change points identified were
directly related to indicators used in the manual annotation of revision phase, so they
might not be applicable to other types of points-of-interest such as the end of an initial
planning phase, or a distinctive shift in (non-)linearity. Yet, the indicators are relatively
general (e.g., document length, cursor position) and focus on the main points presented
in Inputlog’s process graph, indicating their utility for writing practice and research.
Future work should identify to what extent it is possible (and useful) to label the change
points, and whether different variables could label these change points more accurately.

Second, one could use the change points to segment the writing process in different
phases, allowing for analyses across all the different phases, rather than aggregating
keystroke data over the full writing process (e.g., Xu & Xia, 2021). In addition, one could
remove a specific phase, if it is out of interest for the specific analysis (e.g., removing the
final revision phase as in Baaijen et al., 2012). Finally, one could test whether the type
of processing is different in different segments, focusing for example on different pause
patterns across the segments (cf. Roeser et al., 2025).

6. Conclusion

In this study we tried to explore the possibilities to automatically determine change points
in writing processes, and use this as a basis to identify the change point that indicates the
transition between the first (dominant focus on writing) and the second phase (dominant
focus on rereading and revision) of a writing process. Our results showed that the BEAST
algorithm was useful in detecting change points in keystroke data. In particular, relative
position, followed by document length and distance product/process showed to be
promising indicators to determine change points. Unfortunately, our results showed that
it is still difficult to identify the change point connected to a second phase. Yet, we
contend that our approach to identify change points is still useful to explore a specific
subset of points-of-interest within the writing process or to divide the writing processes
in specific segments with their own functionality.
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