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Abstract: Understanding the temporal organization of writing is key to studying writing processes. 
Existing methods to segment writing into phases often rely on arbitrary rules, extensive manual 
annotation, or focus on numerous transitions. This study aimed to develop an automated 
segmentation method to detect distinctive transition in the dominant writing process, particularly 
the transition from first draft to revision. For this, keystroke data (source-based L1 writing (N = 80) 
and text simplification in L2 (N = 88)) were manually annotated. The BEAST algorithm was applied 
for Bayesian change point detection, based on five characteristics derived from the annotation 
criteria: (1) percentage of the final text written so far, (2) distance between typed and remaining 
characters, (3) relative cursor position, (4) source use, and (5) pause timings. The first three features 
proved most effective in identifying change points. A rule-based approach was further applied to 
select one final change point, which resulted in mediocre accuracy ranging from 31% exact 
agreement to 49% agreement within 60 seconds. To conclude, the BEAST algorithm is useful in 
detecting a variety of change points in writing processes, yet connecting them to meaningful 
phases is still quite complex. 
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1. Introduction  

In the analysis of writing, the temporal organization of the writing process and sub 
processes — such as planning, drafting, revising, or consulting external sources — has 
only received limited attention. Van den Bergh & Rijlaarsdam (2001) were among the 
first researchers to clearly explain and demonstrate the importance of a more time-based 
approach to writing process research. Their focus was motivated by the fact that the task 
situation gradually changes as the writing process evolves, with the introduction and 
revision of new ideas becoming progressively less frequent as writers move towards a 
final version (Lo Sardo et al., 2023). This also has an effect on the amount of text added 
and/or revised over time, especially when a composition task is divided over multiple 
sessions (Bowen & Van Waes, 2020). Additionally, the temporal organization of writing 
is influenced by the writers' profiles, i.e. depending on the writer’s preferences and 
experiences, writers will distribute cognitive activities differently (Van den Bergh & 
Rijlaarsdam, 2001; Van Waes & Schellens, 2003). Examining the temporal organization 
of the writing process can also provide key insights into self-regulation mechanisms (Saqr 
et al., 2021) and metacognitive strategies (Huang & Zhang, 2022). Furthermore, certain 
temporal distributions of tasks in the writing process are also predictive of text quality 
levels (Xu, 2018). 

An often used method to examine the temporal organization of the writing process is 
to divide the writing process into phases, stages, segments, or episodes (e.g., Leijten et 
al., 2014; Sala-Bubaré et al., 2021; Xu & Xia, 2021). It is important to note here that this 
temporal approach to segmenting the writing process does not imply that composing 
texts is a linear process. Despite the continuous non-linearity that characterizes writing, 
a temporal approach adds an important perspective to the analysis of writing processes. 
This perspective is exemplified in the study by Xu & Xia (2021). They showed that overall 
writing time in second language writing is not affected by writing expertise. However, 
when the writing process was divided into three traditional sequential phases: 
prewriting/planning, formulation, and revising/reviewing, differences were found: 
Novice writers mainly focus on formulation, limiting the other phases, while more 
proficient writers distribute the time spent on the different phases more equally.   

For examining the temporal organization of writing, logging tools (e.g., keystroke 
logging and/or eye-tracking) are key as they allow for the collection of temporal data on 
mental activities that might not be (fully) available through introspection (Torrance & 
Conijn, 2024). Although a variety of approaches exist into segmenting keystroke log data, 

the operationalizations are often relatively arbitrary (e.g., segment the writing into three 
segments of equal duration) or require extensive manual labelling (S. Li & Yu, 2024). 
Accordingly, in this study we aim to develop an automated segmentation of writing 

processes that focuses on a distinctive transition in the dominant writing processes, based 
on keystroke data. 
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2. Related work 

The operationalization of time-based segmentation approaches differs across studies, 
with respect to the level of focus and the level of automatization. In addition, some 
approaches are more suitable for multi-session processes, while others are solely built for 

single-session processes. In the following, we distinguish four different types of 
segmentation approaches: time-based, content-based, version-based, and function-
based.  

2.1 Time-based segmentation 

As stated above, Van den Bergh and Rijlaarsdam (2001) were among the first researchers 
who stressed the importance of a temporal approach to studying the writing process. In 
their thinking-aloud study, they modeled the occurrence of cognitive activities 
(orientation and planning activities versus formulating activities) as a function of the time 
elapsed since the start of the task. Including the total time elapsed so far or temporal 
location has subsequently been the approach in a variety of keystroke logging studies 
(see e.g., Zhang et al., 2016).  

Rather than using time directly into modelling the writing process, time-based 
approaches have been used to segment the keystroke log into several time-based 

segments. The most common approach is to divide the process into three segments of 
equal length (see e.g., De Lario et al., 2006; Tarchi et al., 2023), arguably because it can 
be easily referred to as the ‘start’, ‘middle’, and ‘end’ of the writing process. Other studies 

have looked into more segments, including five (Leijten et al., 2019) and ten equal time 
intervals (Van Waes & Leijten, 2015). In the five intervals study, the authors used the first 
interval as a proxy for the initial planning phase, and the last interval as a proxy for the 

second draft, revision phase (Leijten et al., 2019).  
The main advantage of this interval approach is that it is intuitive and easy to 

automate. Inputlog (Leijten & Van Waes, 2013), a commonly used program to collect 

keystroke data, already provides a default option to split the writing process into intervals 
of equal length, where the number of segments can be defined by the user. Moreover, 
the approach facilitates the comparison of writing processes of different lengths. A 

downside of this approach is that time segments of different total lengths are compared. 
In addition, there is no clear consensus or rationale for an ‘optimal’ number of segments, 
and the question is if such an optimum would even exist. Regardless of the number of 

chosen segments, the distinction can be considered quite arbitrary, as it does not take 
into account the different activities performed within the writing process (e.g., a segment 
might consist of no keystrokes), different functions (e.g., whether the dominant process 

was drafting an outline or making post-draft revision), or the content written (cf. Xu & 
Xia, 2021).  
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2.2 Content-based segmentation 

Rather than segmenting the writing process based on time, others have segmented the 
process based on the content written. Similar to including the total time elapsed so far, 
the total amount of characters produced so far can be used as a function to model the 

temporal aspect of the keystroke log. Some content-based segmentation approaches go 
beyond the number of characters produced towards the actual content produced. For 
example, Sala-Bubaré et al. (2021) manually distinguished different sections of an 

extended abstract in doctoral writing: title, introduction, objective, method, results, 
discussion, and sources. Segments that included two or more sections were labeled as 
global. These segments were then connected to activities in the writing process. Content-

based segmentation is more common in analyses focusing on the writing product 
(linguistic analyses) rather than the writing process. For example, Crossley et al. (2022) 
used a content-based segmentation, in which they extracted different argumentation 

elements, such as primary claim, final claim, counterclaim, rebuttal, data, and 
concluding summary. Here they connected the incidence of these argumentative features 
with writing quality. 

The advantage of these content-based approaches is that it connects the writing 
process directly with the writing product. In addition, some of the segmentation might be 
done automatically by using natural language processing approaches. However, the 
disadvantage of these approaches is that they are very time-intensive if done manually. 
Both automated (with NLP) and manual approaches are especially difficult if many 
revisions are made during the writing process, as it is not always clear what writer is 
writing about if only part of a sentence is written and then revised (cf. Mahlow et al., 
2022). 

2.3 Version-based segmentation 

Related to content-based approaches are the version-based segmentations. These types 

of segmentations explicitly distinguish between different versions created by 
intermediately saving the text-produced-so far or by ending/starting a new writing 
session. A version has been defined as: “a point in the production history of a text that is 

deemed relevant based on particular criteria, a version is thus a specific text-produced-
so-far” (Mahlow et al., 2022, p. 450). A version can be initiated by the writer or by the 
system (auto-save). For example, some studies have used automated versioning built into 

existing editors (see e.g., Lo Sardo et al., 2023). Here the authors used two different types 
of text editors, with Google docs creating a version every minute (if any writing activity 
took place), and WeWrite which created a new version every 3 minutes. 

In writer-based versioning, the writer actively saves a version themselves (see e.g., 
the study on Wikipedia revision by Daxenberger & Gurevych, 2013). For example, 
Leijten et al. (2014) segmented the writing process of a single author in professional 

communication into five different segments, based on the five separate writing sessions 
the author employed. In a comparable way, Bowen & Van Waes (2020) created segments 
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based on different sessions when students worked on their essays. In this qualitative study 
two essays were finalized after seven sessions; and one essay after five sessions. 
Interestingly, the version-based approaches was not the endpoint in both studies: Leijten 

et al. (2014)  further divided the sessions into beginning, middle, and end of the writing 
process (time-based segmentation), while Bowen & Van Waes (2020) decided to further 
segment the sessions using a time-based approach based on the temporal ordering of the 

revisions. Rather than subdividing the sessions, Buschenhenke et al. (2023) chose to 
combine sessions, using clustering. In their study, 386 writing sessions were identified in 
the writing of a complete novel, which were subsequently combined into nine clusters 

based on the non-linearity characteristics within the sessions.  
The advantage of focusing on saved versions or sessions is that it does not rely on 

keystroke logging, hence it can be implemented relatively easily. A downside of 

automated versioning is that automated versioning does not reflect the writer’s process 
management or their decision to segment it.  Further, both automated versioning and 
writer-based versioning might not necessarily fit the researcher’s aim. In addition, the 

writing sessions might differ substantially in total duration of the sessions and in the 
content created within the sessions. For example, Buschenhenke et al. (2023) found 
sessions ranging from a couple of minutes to over three hours. For some of the sessions, 

the time between sessions was very short, indicating that some of these sessions might 
be combined. In addition, some of the longer sessions included substantial idle time (over 
30 minutes), indicating that these sessions might be split. The fact that merely 

distinguishing the writing process based on sessions is not always enough is also visible 
from the fact that these sessions have been further subdivided (Van Waes et al., 2014), 
grouped (Bowen & Van Waes, 2020; Buschenhenke et al., 2023). 

Accordingly, some researchers did not follow the authors’ versioning, but focused on 
researcher-based versioning created post-hoc, often based on some additional process 
characteristics obtained from keystroke logging. For example, Cislaru & Olive (2018) 

identified the start of a new version based on a long pause, while Mahlow (2015) 
automatically defined versions based on changes in the production. A new version was 
identified if the writer switched from continuous writing to continuous deletion or 

insertion. The latter could already be seen as a more function-based approach, 
distinguishing between text production and revision. 

2.4 Function-based segmentation 

Function-based segmentations indicate a segmentation based on a dominant (cognitive) 
writing process or activity. A common distinction is between the three most-cited writing 
(sub)processes planning, translating, and reviewing (Flower & Hayes, 1981). This is often 
based on manual annotation, where process visualizations such as Inputlog’s process 
graph (Leijten & Van Waes, 2013), are utilized as a resource to aid the annotation. For 
an example of the process graph, see Figure 1. Xu & Xia (2021) manually divided the 
writing process of L2 writers into these three subprocesses. Prewriting/planning was 
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defined as: “the temporal span from the beginning of a writing event upon topic 
assignment till the commencement of continuous textual output, featured by the flat 
product line (the solid line) following the beginning of a writing event” (p. 592; see also 

Figure 1 and related process graph description). Formulation was defined as “the process 
of continuous textual output, featured by steeply climbing process and product lines” (p. 
592). Finally, reviewing/revising was defined as “the process temporally following the 

formulation process, with the cursor position (the dotted line) being moved to the 
beginning part of the text for reviewing and revising till task completion” (p. 592). This 
final reviewing/revising phase was similar to the revision phase in their previous work, 

which was operationalized as the last revision(s) away from the point of inscription, 
whose termination was not followed by further production at the end of the text (Xu, 
2018). 

Similarly, Hall et al. (2022) manually distinguished explicit pre-planning and post-
draft revisions. However, as the participants were asked to write spontaneously or plan 
on paper (depending on the condition), no planning other than writing the title was 

identified. Post-draft revisions were defined as text production after the writer decided to 
close their essay. Here the authors included both textual factors (whether the writer used 
words like ‘to conclude’ or ‘finally’), as well as process factors (whether the writer moved 

away from the leading edge to start making edits from ‘top-to-bottom’). This notion of 
top-to-bottom revision was also mentioned in Xu & Xia (2021)’s definition above, 
focusing on the cursor being moved to the beginning. Baaijen et al. (2012), first isolated 

the initial prewriting/planning phase as part of the task instruction since they asked the 
participants to plan their text with pen and paper for five minutes. Next they distinguished 
the other phases manually. First they categorized continued planning on the computer 

separately from text production. Then, they manually annotated text produced during an 
initial draft from text produced during a revision draft or the final revision phase (Baaijen 
et al., 2012). The final revision phase was defined as the revisions made outside the final 

paragraph, when the writer was working on the final paragraph (similarly to Hall et al.’s, 
2022, focus on textual factors). In total, this final revision phase was identified in 65% of 
the writing processes. 

The advantage of these function-based approaches is that they might be considered 
less arbitrary than time-based or version-based approaches, as they are directly related 
to functions or dominant writing processes involved. However, as could be seen from 

these examples, the segmentation is usually done based on manual inspection of progress 
graphs, keystroke logs, and replays of the writing process. The rules for manual 
annotation vary across studies often focus on single-session composition processes, and 

are arguably not always easily implemented (interestingly most articles do not mention 
any coding difficulties or inter-rater reliability, but see Xu, 2018). Therefore, in the current 
paper we aim to develop an automated function-based segmentation that overcomes 

these limitations. 
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2.5 Going beyond sequential phases 

It is well-known that cognitive processes in writing are non-linear rather than sequential. 
The planning, translating, and reviewing processes are inter-related and interact. 
Accordingly, rather than segmenting the writing process into a specific number of 

consecutive segments, some researchers have also looked at dividing the keystroke log 
into specific micro-processes or activities, where activities can have different lengths and 
are recurring over time. These activities have been related to the cognitive subprocesses 

of writing and sometimes include behavioral metrics rather than cognitive constructs, 
such as typing versus reading sources. Exploring the sequences and combinations of these 
micro-processes or activities can further shed light on the non-linearity of the writing 

process. 
For example, Kruse (2024) distinguished text production from source-use, based on 

the automated detection of focus shifts away from the written text. Guo et al. (2019) 

automatically segmented the writing process into three different activities including: text 
production, editing (out of order insertion or deletion), and long pauses (pauses which 
are longer than four times the median pause length thus far). Conijn et al. (2024) further 

extended on the notion of editing by – as argued by the authors – focusing on the full 
cognitive process of making a revision, so for example also including the replacement 
text after an insertion. They used a rule-based algorithm to automatically distinguish 
revision activities from non-revision activities based on the number of deletions and the 
cursor position relative to the leading edge. Lo Sardo et al. (2023) also focused on the 
automatic extraction of sub-cycles of planning and translation using edit distances 
between different versions of the text. Specifically, planning or exploration was 
operationalized as moments where the edit difference between the first and last version 
was larger compared to the edit distances between the current version and first and last 
version combined (larger difference means more exploration). Translation in turn was 
identified when the writer more or less fluidly translated their ideas, deterministically 
reducing the distance between the first and last version.  

Other researchers have opted for a broader segmentation, including a wider range of 
activities. For example, Sala-Bubaré et al. (2021) used manual annotation to identify 
seven different types of activities: text production, interaction with sources, editing 
(surface-level revisions), revising (deep-level revisions), reading text written so far, 
deleting (without inserting new text), recursive reformulations (changes at the point of 
inscription). These segmentations were done on top of the content-based segmentation 
of the different sections written as described above. Similarly, De Smedt and colleagues 
(under review), divided the keystroke log into automatically identified segments, 
including several activities related to accessing/reading resources, text production, 
navigation, and revising (including immediate and distant insertions and deletions).  

The advantage of these approaches focusing on microprocesses is that they are more 
detailed and follow more closely the fact that writing is a non-linear process. In addition, 
these types of segmentation are usually well-suited for process mining methods, where 
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the different activities can be seen as different ‘states’ and the changes between activities 
as ‘transitions’ (see e.g., De Smedt et al., under review). This type of analysis can also be 
interpreted in function of time, providing a specific focus on the distribution of a 

particular micro-process. A downside of this approach is, however, that by focusing on 
specific micro-processes there will be a lot within and between-writer variation and 
noise, making it harder to interpret the findings in terms of overall writing development 

or to improve writing instruction. This is also why these types of analyses are often 
supplemented with additional analyses such as clustering methods, to aid the 
interpretation.    

2.6 Current approach 

In this study we aim to develop an automated function-based segmentation of single-
session processes that, rather than using a micro-approach focusing on a large number 
of transitions, focuses on a macro-approach identifying distinctive transition of the 
dominant process (e.g., in this case from predominantly writing to predominantly 
revising), based on keystroke data. Such a dominant switch in keystroke dynamics can 
also be seen as ‘points-of-interest’ as referred to by Leijten et al. (2014). In particular, our 
procedure consists of two steps. First, we aim to detect change points in the keystroke 
data. Thereafter, we aim to automatically select the change point that is indicative of the 
transition or change point from the production of a first draft of a text, with a focus on 
planning and the production of new content, towards a second phase in which writers 
revise and finalize their first (intermediate) draft. The full procedure is evaluated using 
manual coding of a set of process graphs obtained via the keystroke logging tool Inputlog. 
In particular, we aim to answer the following research questions: 

1) To what extent is it possible to automatically detect change points in the writing 
process? 

a. To what extent do automatically identified change points overlap with 
the manual annotation of the start of the second phase? 

b. Which variables – inductively identified from human coding – are the 
best predictor(s) to detect change points in writing processes? 

2) To what extent is it possible to automatically select the change point that 
indicates the transition to the second phase? 

3. Method 

3.1 Datasets 

For this study, we used two datasets consisting of keystroke data collected via Inputlog 
(Leijten & Van Waes, 2013). The first dataset came from the project PLanTra (Plain 
Language for Financial Content: Assessing the Impact of Training on Students' Revisions 
and Readers' Comprehension) and the second dataset came from the project LIFT 
(Improving Pre-university Students’ Performance in Academic Synthesis Tasks with Level-
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up Instructions and Feedback Tool). We particularly chose these two datasets as they are 
representative of different writing tasks, which presumably increases the variability in 
how a second phase might be initiated, thus allowing us to test our approach in a broader 

range of contexts.  
The PLanTra project involved the collection of keystroke data from 47 Dutch-

speaking university students, writing in English (L2). In a pre-test session, al students were 

assigned an extract of a corporate report dealing with sustainability and were instructed 
to revise it to simplify the text for a lay audience. Subsequently, half of the students 
received training on how to apply plain language principles to sustainability content, 

while the other half received training exclusively on the topic of sustainability. During a 
post-test session, both groups were instructed to revise a second extract of a corporate 
sustainability report. Not all participants participated in both the pre- and post-test, 

resulting in a total of 88 sessions being logged. A more detailed description of the 
methodology in the PLanTra project can be found in Rossetti & Van Waes (2022b). The 
dataset for the PLanTra project is published in Rossetti & Van Waes (2022a). 

The LIFT project’ s goal was to provide feedback and instruction to students’ synthesis 
writing in the Netherlands, based on national baseline data. Various types of data were 
gathered to create the baseline including keystroke data. The baseline consists of a large 

and representative sample of 658 students from 43 schools. Participants were upper-
secondary students from grades 10, 11 and 12. The students wrote multiple texts in two 
genres (argumentative and informative) of source-based writing in Dutch (L1). For the 

current study, a subset of writing processes was selected from the baseline: 40 processes 
of argumentative tasks and 40 processes of informative tasks. The processes selected for 
the subset cover a wide range of performance levels. For details on the methodology of 

the LIFT project, please consult Vandermeulen, De Maeyer, et al. (2020). The dataset for 
the LIFT project is published in Vandermeulen, Van Steendam, et al. (2020). 

3.2 Development of manual annotation criteria 

As a first step in the coding, we built a set of criteria that could be used to identify the 
change point between the initial planning and production of new content, and a second 
phase in which writers revise and finalize their first (intermediate) draft. The initial step 
in criteria development involved an inductive analysis of the writing process, for which 
we used Inputlog’s process graph (Leijten & Van Waes, 2013; see also Figure 1). 
Inputlog’s process graph has been used to aid manual annotations (e.g., Xu & Xia, 2021 
as described in the introduction). The process graph is a visualization aid that has been 
used to visualize the writing process based on keystroke data. The characteristics shown 
in the graph is based on an extended period of writing process research (E. Lindgren & 
Sullivan, 2019; Van Waes & Schellens, 2003), which allow for inspection and analysis 
of pausing behavior (Van Hell et al., 2008), writing fluency (Feltgen & Cislaru, 2025), 
(non-)linearity (Buschenhenke et al., 2023), revisions (E. Lindgren & Sullivan, 2006), and 
interactions with sources (Tarchi et al., 2023). The process graph in particular visualizes 
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five different characteristics of the writing process: (1) product development (number of 
characters in the product so far), (2) process development (number of characters 
produced so far), (3) cursor position (at that moment in time), (4) pause distribution and 

pause length, and (5) interaction with sources.  
Based on Inputlog’s process graph, two researchers independently identified the 

beginning of the second phase on a subset of 24 cases from the PlanTra dataset. After 

discussion, the researchers agreed on three criteria for the annotation. The first criterion 
was the movement of the cursor towards – or close to – the start of the document, 
indicating that the writer had completed a first draft and was prepared for a whole-text 

reading/revision. The researchers also agreed that, when the cursor moved to the start of 
the text too early in the writing process (e.g. in the first quarter the process), or when this 
movement was fast and immediately followed by a repositioning of the cursor to the 

point of utterance, the cursor movement should be disregarded. A second criterion was 
the deletion of unnecessary content, as indicated by a sudden and substantial split 
between process line and product line. In the PlanTra dataset this was often the case 

when students opted for rewriting a new text from scratch and subsequently deleted the 
assigned text once their new draft was completed. The third criterion was the flattening 
of the product line, indicating that no substantial content was being added anymore (i.e. 

the first draft was produced). For a detailed description of the criteria, see Table 1. 
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Figure 1. Inputlog process graph, including the five criteria for the second phase. 
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Table 1. Description of indicators and annotation criteria. 

Indicator Criteria Explanation 

Document length Product line 

flattens 

When the product line flattens at a certain moment, 

this indicates that text production slows down or 

(temporarily) stops while rereading, and (low-level) 

insertions and deletions throughout the text follow up 

on each other, keeping the total length of the text 

more or less constant. So, this change in slope often 

marks the start of revision and rereading during the 

second phase. 

Distance between 

product and 

process line 

Distance 

between product 

and process line 

increases 

Those writers that prefer rewriting the text by 

producing a new text (and do not revise in the source 

text itself) usually delete the original text at the end of 

the first phase. Some writers also delete the source text 

paragraph by paragraph. In this case, deletions are 

recursive and we take as change point — marking the 

start of the second phase — the end of the last 

recursive movement. Substantial deletions are always 

represented by a considerable drop in document 

length and, in turn, by greater distance between 

process and product line. 

Relative cursor 

position 

Point of utterance 

changes to start 

of the text 

A moving cursor line towards the beginning of the text 

indicates that the writers' focus is changing from the 

end of the file towards the beginning of the text 

produced so far. Sometimes this happens in longer 

cycles that follow up on each other. This repositioning 

is often characterized by an initial longer reading 

pause indicating the start of a reflective revision phase 

(i.e. a second phase). 

Length of source 

use 

Interaction with 

sources is 

minimized 

A drop in the interaction with sources often indicates a 

shift in the writers' focus from external documentation 

to the text itself, where revision becomes the central 

activity. 

Pause length Longer pauses 

occur more 

frequently 

At the start and during the second phase writers tend 

to pause longer. We see a change in the pausing 

pattern in which the clusters of short pauses close to 

the x-axis are opened, and longer pause plots higher 

up in the graph are observed. Most of these longer 

pauses are likely related to reading and to evaluating 

the text produced so far. 
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Following the identification of three criteria, the two researchers applied these criteria 
again to the entire PlanTra dataset. The researchers had an initial agreement in 73% of 
cases, which – after discussion – resulted in full agreement. The researchers also observed 

that the change points were usually preceded or followed by longer pauses (marking the 
beginning of a reflective reading/revision second phase) and by a change in the pattern 
of the interaction with sources (usually source use was minimized, indicating that 

external content was less frequently used once their first draft was completed). Based on 
these observations, the pause length and interaction with sources were added as 
supplementary criteria. During this stage of criteria development, the researchers also 

decided that the pause preceding the second phase would also be included, as this long 
pause could already indicate the start of a reading/revision phase, even though no 
external edits or actions are visible yet. The detailed description of the five criteria is 

shown in Table 1. 
In the next stage, the two researchers recoded the same subset (n = 24) of the PLanTra 

process graphs using the new descriptions of the five criteria. Here, the researchers 

agreed in 83% of cases, and reached agreement on 100% of cases following discussion. 
In addition, this second round of coding confirmed that pause length and interaction with 
sources (i.e. the newly added criteria) were relevant for the identification of change 

points, especially when no clear change point was found using the first three indicators. 
Interestingly, for 75% of process graphs, the researchers identified more than one 
criterion that indicated the change point.  Moreover, these criteria also allowed the 

researchers to identify writing processes (six out of the total) that did not involve a second 
phase.  
 

3.3 Manual annotation 

In the third round, three researchers applied the five criteria to the process graphs from 
the LIFT dataset. We believed that the indicators could be translated from the PlanTra to 
the LIFT dataset, as the datasets shared the characteristics of being both single-session 
source-based writing tasks (cf. Future work infra). For the informative texts, all three 
authors agreed in 68% of cases. Pairwise consensus (i.e. between two annotators) was 
reached on average in 78% of cases, but full agreement on all process graphs was 
reached after discussion. For the argumentative texts, agreement between the three 
researchers increased to 81% (87% for pairwise consensus), possibly as a result of coding 
practice. Full agreement was again reached following discussion. In addition, the three 
researchers also reached agreement on 24 process graphs that did not show a second 
phase. In total, there are 6 (PlanTra) + 24 (LIFT) = 30 sessions without an annotated 
change point, and 82 (PlanTra) + 56 (LIFT) = 138 sessions with an annotated change 
point. 
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3.4 Automated change point detection 

The automated identification of the change point included three steps: (1) pre-processing, 
(2) automated detection of change points in the keystroke data, (2) automated selection 
of the change point between the first and second writing phase. All steps were performed 

using R, and the code can be found at:  https://github.com/RConijn/Keystroke 
ChangePoints. 

For the pre-processing, we first translated the five criteria as close as possible into 

indicators that could be retrieved from the keystroke data. Specifically, for criterion 1 
(product line flattens) the product line was measured using the product length, relative 
to the final product length; for criterion 2 (distance between product and process line 
increases) the distance between the product and process line was measured using the 
difference between the number of characters produced and the product length; for 
criterion 3 (point of utterance changes to start of the text) the relative position was 

calculated by the cursor location, divided by the product length; for criterion 4 
(interaction with sources is minimized) the length of source use was calculated by the 
log cumulative sum of the time the writer spent in sources outside the main document; 

and finally for criterion 5 (longer pauses occur more frequently) pause length was 
measured using the cumulative mean of pauses, where pauses were log-transformed and 
trimmed to the 99% percentile. There was a low to moderate correlation between the 
criteria, ranging from |r| = 0.01 to 0.43. The strongest correlations were observed 
between criterion 1 and 4 (r = -0.43, p < 0.001) and criterion 1 and 2 (r = 0.41, p < 
0.001).  

For the change point detection algorithm, the keystroke data needed to be 
transformed into a time series that provided a value for each of the five indicators per x 
seconds. Given the fact that keystroke data can be relatively noisy, with quick jumps 
back and forth in the text, we decided to summarize the log file in multiple ways: per 1, 
5, and 10 seconds. This was done to determine which timeframe would most effectively 
get rid of this noise, without overgeneralizing too much. In addition, given the fact that 
the start of the writing process is often messy, and usually not of interest for the detection 
of writing phases, we summarized the full writing process as well as the writing process 
with the first 10% of the time excluded (no trimming, versus 10% trimming). This resulted 
in a total of 3 (time) * 2 (trimming) = 6 different time series.  

After the pre-processing, we first automatically identified change points in the 
keystroke data, based on each of the five indicators. For example, for the first indicator, 
one might see an increase in product length (steep product line), followed by a relative 
stable product length (product line flattens). A large change in the slope of the product 
length would then be indicated as a change point. The change points were identified 
using a Bayesian ensemble change-detection algorithm for time series, called the 
Bayesian Estimator of Abrupt change, Seasonality, and Trend (BEAST) from the Rpackage 
‘Rbeast’ (Hu et al., 2021; Zhao et al., 2013, 2019). BEAST is a statistical algorithm that 
breaks a time series Y(t) into trends, seasonal variability, abrupt changes, and noise. It is 
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an ensemble algorithm, which means that it combines multiple weaker models into one 
stronger model, using Bayesian model averaging. In addition, given that it is a Bayesian 
algorithm, rather than providing a point estimate for the change points, BEAST estimates 

the probability of the change points, and provides a credible interval for the location of 
the change points. For more information on the BEAST algorithm, see Zhao et al. (2019). 

For the current problem, seasonal variability was not modeled because keystroke data 

do not exhibit periodic patterns (such as regular cycles seen in weather data, like daily 
or annual fluctuations). This resulted in the following model of the keystroke time series: 

 𝑌ሺ𝑡ሻ = 𝑇(𝜃௧) + ɛ 
 
where T is the term for the trend component, which is modeled as a piecewise linear 

function with an unknown number of change points. Here, 𝜃௧ specifies the number and 
location of the change points in the trend component, and ε is the Gaussian random error 
term N(0, δ2) with an unknown variance δ2. The posterior probability distribution of 𝜃௧ 
and δ2 are simulated using Markov Chain Monte Carlo (MCMC) sampling. For more 
information on the Bayesian MCMC scheme used, see Zhao et al. (2019). In our analysis, 
we opted for the default MCMC sampling settings, using three parallel chains with 8000 

samples each. The first 1500 samples per chain were discarded as burn-in, and only 
every 5th sample was retained (thinning factor = 5). Weakly informative priors were used 
for the trend estimations 𝑇, with trend orders limited to 0 (flat) or 1 (linear), and the 

number of changepoints bounded between 0 and the maximum number of changepoints 
to be estimated. A non-informative uniform prior was used for the precision (i.e. the 
inverse variance: 1/δ2). Model convergence was checked manually using trace plots for 

a subset of the models. In addition, robustness of the changepoints was further enforced 
by using only changepoints with a high probability and a narrow credible interval when 
selecting the final changepoint of interest (for details see below). This approach has been 

previously proven as a useful way to eliminate false change points (J. Li et al., 2022).  
The BEAST algorithm was run for each participant, on each of the six time series, for each 
of the five indicators (univariate models), with a varying amount of maximum change 

points to be estimated (1, 3, 5, 10, or 20). The minimum distance between two 
consecutive change points was set to 10 seconds. In addition to the univariate models, 
multivariate models were estimated, with the first three indicators combined. However, 

it should be noted that these multivariate models are for experimental use only and still 
under development (see Rbeast documentation). The BEAST algorithm was evaluated in 
two ways. First, the goodness-of-fit of the algorithm was determined using the adjusted 

R2 (only available for the univariate models). Second, we identified whether the manual 
annotated change point was among one of the BEAST-detected change points or fell into 
the 95% credible interval of the BEAST-detected change points.  

Thereafter, the best performing BEAST algorithm was selected for each of the 
indicators. As these algorithms provided multiple change points for the indicators (often 
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close to the set value of the maximum number of change points), we still needed to 
identify which of the change points would most likely be the change point of interest. To 
select the final change point, a rule-based algorithm was used, including several 

overarching rules. The change point should be after 1/3rd of the process; the majority of 
the document needs to be written (70%); the change point should have a high probability 
(>70%); and the change point should have a relatively narrow credible interval (< 60 

seconds). In addition to the general rules, several indicator-specific rules were used, 
based on the increase or decrease in the intercept or slope of the indicator, following the 
manual annotation rules (top 3 flattest product line, that is slope of the segment close to 

0; top 3 largest abrupt change in distance product versus process line; top 3 largest abrupt 
change in cursor location). Based on the final set of change point candidates left, a rule-
based algorithm was created to pick the final change point (as shown in the results 

section). 

4. Results 

4.1 Automated detection of change points 

The BEAST algorithm was used to determine the change points for each of the five 
indicators for all sessions. The full results of all estimated change points overlaying 

Inputlog’s process graph (including the different summarization methods and trimming) 
can be obtained from the interactive Shiny application:  
https://rianneconijn.shinyapps.io/PhaseAnalysis/. It was found that trimming versus no 

trimming had limited effects on the final results. As expected, higher-level aggregation 
(per 5 or 10 seconds), resulted in slightly higher accuracy, compared to aggregation per 
1 second, with limited difference between aggregation per 5 or 10 seconds. Therefore, 

below we only report the results on the models summarized per 5 seconds, without 
trimming. 

A sample of the estimated change points for the first indicator, document length, can 

be found in Figure 2. In this sample, it can be seen that out of the five maximum change 
points, all five change points were estimated for all four participants. Three of the four 
change points are relatively accurate: three of the change points are relatively close 

(participant 1, 3, and 4), and two of those fall within the 95% credible interval (participant 
1 and 4). For participant two, a maximum of five change points seem too little (note that 
only four change points are identified here in the algorithm), or the indicator (document 

length) might have been suboptimal to identify this change point. 
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Figure 2. Estimated change points for document length (indicator 1) using the log file  

summarized per 5 seconds, with no trimming, and 5 maximum breakpoints.  
Results are shown for a subset of 4 participants (all from the LIFT dataset). 

Note. Results for the other indicators, log file summarizations, and participants,  
can be obtained from https://rianneconijn.shinyapps.io/PhaseAnalysis/. 

The algorithms were evaluated based on goodness-of-fit as well as the overlap with the 

manual annotated change point (that is, whether the indicated change point overlapped 
with the manual annotation). An overview of all findings can be found in Table 2. The 
Shiny dashboard allowed us to further explore and evaluate the algorithm's identification 

of change points at the case level. For the goodness-of-fit we found that when more 
change points were estimated, the models fit the data better. The distance between the 
product/process indicator resulted in the best models, with an average adjusted R2 of 

0.97-0.99 across all participants, regardless of the number of change points used. The 
length of source use shows similar high model fit, which is probably due to the fact that 
there was limited source use, resulting in a relatively flat curve, which was easy to predict 

by the model. The opposite is happening for the relative position, which showed the 
lowest model fit. For models with a single change point, the model does not seem to  
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Table 2. Accuracies of the univariate change point detection using BEAST  

Indicator Maximum 

number 

of change 

points 

Correct 

change 

point 

(%) 

Correct 

change 

point 

(%) 

within 

95% 

CI 

Median 

difference 

(sec) 

95% CI 

difference 

(sec) 

Mean 

marginal 

likelihood 

Mean 

adjusted R2 

Document 

length 

1 10.9 14.5 425 [0;2182] -570 0.929 

3 12.3 18.1 195 [0;1146] -396 0.961 

5 23.2 33.3 38 [0;676] -163 0.985 

10 25.4 42.8 15 [0;395] 77 0.993 

20 26.1 44.9 10 [0;183] 205 0.995 

Distance 

product/ 

process 

1 6.5 8.0 532 [0;2756] -446 0.972 

3 13.8 17.4 185 [0;1319] -182 0.990 

5 21.0 27.5 35 [0;720] 105 0.995 

10 23.9 34.1 20 [0;493] 371 0.996 

20 24.6 37.7 12 [0;277] 463 0.996 

Relative 

position 

1 22.5 22.5 370 [0;2228] -1115 0.637 

3 44.2 44.2 25 [0;1244] -951 0.797 

5 55.1 55.1 0 [0;573] -736 0.904 

10 64.5 68.1 0 [0;380] -433 0.964 

20 70.3 71.0 0 [0;183] -229 0.976 

Length of 

source use 

1 0.0 0.0 1455 [796;2441] -264 0.941 

3 0.0 7.9 982 [42;1959] 866 0.988 

5 0.0 9.5 600 [45;1880] 2396 0.994 

10 0.0 6.5 418 [42;3140] 3247 0.994 

20 0.0 5.8 452 [12;2508] 3255 0.994 

Mean 

pause 

length 

1 0.0 0.0 1445 [396;3473] -747 0.849 

3 0.0 0.0 1165 [175;2752] -537 0.921 

5 0.0 5.1 705 [25;2215] -332 0.954 

10 0.7 13.0 400 [7;1781] -195 0.980 

20 1.4 17.4 285 [5;1781] -165 0.966 

Note. Accuracies are provided for the change point closest to the manual annotation. CI = Credible 
interval. 

capture all fluctuations in the relative position, resulting in an average adjusted R2 of 

0.64. This adjusted R2 increased to 0.96 for ten change points.  
For the number of change points overlapping with the manual annotation, we see 

that one change point is not enough to correspond with the manual annotation 
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(accuracies ranging from 0-11%, with one exception for relative position of 23%). We − 
not surprisingly − found that when we increased the maximum number of change points, 
there was also a higher chance that the manual annotated change point was amongst 

them, resulting in the highest accuracies for the models with 20 as the maximum number 
of change points. The model for the relative position indicator proved to be the most 
accurate model: in 70% of the cases, the manual annotated change point was exactly the 

same as one of the 20 suggested change points. For 71% of the cases the credible intervals 
of the change points included the manual annotated change point. Also the model with 
a maximum of 5 change points already scores above 50%. After the model for relative 

position, the document length and distance product/process indicators proved to be the 
best models. The length of source use and mean pause length proved to be insufficient 
indicators to detect the manually annotated change point, with correct change points 

only in 0-1% of the cases. 
This might indicate that the document length and distance product/process do not 

add much to the relative position indicator. However, it should be noted that the 95% 

credible interval of the difference between the predicted and manually annotated change 
point is much smaller. This indicates that although the multivariate algorithm does not 
necessarily pick the exact correct change point, it seems to be consistently closer to the 

actual change point, with the 95% credible interval being as narrow as between 0 (perfect 
overlap) and 36 seconds for the maximum of 20 change points. 

Table 3. Accuracies of the multivariate change point detection using BEAST 

Indicator Maximum 

number 

of change 

points 

Correct 

change 

point 

(%) 

Correct 

change 

point 

(%) 

within 

95% 

CI 

Median 

difference 

(sec) 

95% CI 

difference 

(sec) 

Mean 

marginal 

likelihood 

Document length, 

Distance product/ 

process, &  

Relative position 

1 11.7 13.9 495 [0;2373] -2765 

3 31.4 36.5 35 [0;951] -2358 

5 45.7 50.7 5 [0;429] -1801 

10 57.2 68.1 0 [0;81] -1014 

20 66.4 77.4 0 [0;36] -292 

Note. Accuracies are provided for the change point closest to the manual annotation. CI = Credible 
interval. Adjusted R2 not available for this experimental multivariate analysis. 

To further identify if similar change points were selected by the different univariate and 
multivariate models, we examined the overlap between the detected changepoints, as 
shown in Table 4. Note that for clarity we only report the models with 10 maximum 

changepoints here. The results indicate that the models identified some overlapping 
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change points, with overlap ranging from 17% to 30%. Among the univariate models, 
the relative position indicator appeared to detect more distinct change points compared 
to the document length and distance product/process indicators. As expected, the 

multivariate model showed the greatest overlap with each of the univariate models. 
To conclude, we see that the length of source use model fits the data well but shows 

little information for predicting the change point. Relative position, followed by 

document length and distance product/process show to be more promising indicators, 
but each indicator seemed to point towards different change points (with some overlap). 
The multivariate model did not seem to outperform the relative position univariate model. 

Finally, we see that increasing the maximum number of change points largely improves 
the models. However, with more change points, it also becomes harder to pick the 
change point of interest. Therefore, the next section looks into selecting the actual change 

point. 

Table 4. Overlap between the detected change points per indicator 

  Percentage of overlapping* change points 

Indicator Mean (SD) 

change 

points 

detected 

Document 

length 

Distance 

product/ 

process 

Relative 

position 

Document 

length, Distance 

product/ process,  

& Relative 

position 

Document length 9.5 (1.1) - 0.25 0.17 0.28 

Distance product/ 

process 

8.7 (2.0)  - 0.18 0.30 

Relative position 9.2 (1.7)   - 0.29 

Document 

length, Distance 

product/ process,  

& Relative 

position 

9.9 (0.7)    - 

Note. *Overlap is considered when the change point falls within the credible interval or within 10 
seconds of the other change point.  Values are provided for the model with 10 maximum change 
points. 

4.2 Automated selection of change point 

In the next step, based on all the change point candidates identified, we aimed to select 
the change point that indicates the transition to the second phase (i.e., revision). Based 
on the outcomes of the first stage, we selected the first three indicators (document length, 

distance  product/process, and  relative position). As the multivariate  models are experi- 
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Figure 3. Rules to select the final change point among change point candidates.  

(CP = change point). 

mental, we only used the change points detected by the three univariate models. Further, 
we selected a maximum of 10 change points per indicator, to avoid having too many 
change point candidates, while still retaining reasonable accuracy.  

First, four overarching rules were applied as detailed in the methods section to filter 
the change point candidates. Thereafter, change points that were considered overlapping 
(that is, change points that were within 10 seconds from each other or within the credible 

interval) were combined into one change point. After this initial filtering step, on average 
4.8 (SD = 2.0, Min = 1, Max = 9) change point candidates were left per participant. 
Finally, a rule-based approach was used to select the final change point, including 

whether more than one indicator showed this change  point, and whether a drop in cursor 
location was shown (for the full rules see Figure 3. An overview of the selected change 
point for each session (compared to the manual annotated change point) can be obtained 

from: https://rianneconijn.shinyapps.io/PhaseAnalysis/.  
The overall accuracy is low: Only in 31% of the sessions the selected change point 

is the same as the manual annotated change point. In addition, we see that some of the 

selected change points are only slightly off (36% correct within 10 seconds of the 
annotated change point, and 49% correct within 60 seconds). The accuracy did not seem 
to depend on session characteristics: although longer sessions showed somewhat lower 

accuracy in the overlap between the manual and selected changepoint, this was not 
found significant. The total number of characters typed and the total number of characters 
in the final product also did not influence the accuracy. For some writing sessions, the 

selected change point is far away from the annotated change point (e.g., in 27% of the 
cases the difference is larger than 5 minutes). A closer inspection into the erroneously 
predicted sessions showed a variety of reasons (see Figure 4 for a subset of sessions with 

low accuracy). For example, some of the authors (e.g., session 82) revised ‘backwards’, 
where the cursor started at the end of the text, and slowly moved upwards to the 
beginning. This slight change of cursor location is not detected by the algorithm. Another 

source of difficulty included sessions where the writer showed more than one phase in 
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which they revised the first draft. The manual annotation guidelines detailed that in this 
case, the start of the first revision cycle needs to be selected. However, this was not 
always done by the algorithm: when the algorithm detected multiple cycles, sometimes 

either the first (e.g., session 77) or the second (e.g., session 135) was selected, which did 
not match the manual annotation.  

 

 

Figure 4. Selected change points versus manual annotated change point.  
Results are shown for a subset of 4 participants (all from the PlanTra dataset)  

showing low accuracy. 

Note. Only the estimated breakpoints are shown that are left after the initial filtering  
step. Results for the other participants can be obtained from: 

https://rianneconijn.shinyapps.io/PhaseAnalysis/. 

Finally, some sessions showed a very late manual annotated change point (e.g., session 
55), where almost nothing happened after the change point, making it hard for the 
algorithm to detect a change in one of the indicators, hence resulting in the selection of 

a change point earlier on in the process. 

4.3 No second phase present 

In 30 of the sessions, no second (revision) phase was present, according to the manual 
annotation. As further proof of concept, we are interested to see how the change point 
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detection algorithm performs in these cases. First, it was found that for almost all (29/30) 
of the sessions, at least one change point was identified after the initial filtering step. On 
average slightly less change point candidates were left compared to the sessions with a 

manually annotated second phase (M = 3.0, SD = 1.3, Min = 1, Max = 6 change point 
candidates left). This indicates that even though there is no final revision phase present, 
still some important change point candidates are identified. For all but one of the 

sessions, at least one change point was related to indicator 1 (document length), while 
indicators 2 and 3 were less present (14/30 and 12/30 sessions, respectively). After 
running a decision tree with 10-fold cross-validation, these characteristics also showed 

up to be the main indicators: If at least one of the change points was related to indicator 
3 (cursor position), there was a high chance of a second phase. In addition, if there was 
no change point related to indicator 3, but there were four or more change points 

detected, there was still a high change of a second phase.  

5. Discussion 

Previous work has used different ways of segmenting writing processes, to be able to 
analyze the temporal organization of the writing process. In this contribution, we 
distinguished four types of segmentation approaches: time-based, content-based, 
version-based, and function-based. We argue that the first three can be arbitrary, where 
the approach often focuses on the researcher’s intuition rather than the writer’s intent. 
The function-based approaches might be more promising, as they are more related to the 
(underlying cognitive) functions or the dominant writing sub processes involved. 
However, function-based approaches require time-intensive manual annotation. 
Therefore, in this paper, we aimed to develop an automated segmentation of writing 
processes that focuses on a distinctive transition in the dominant writing processes. The 
BEAST algorithm (Zhao et al., 2019) was used to automatically detect change points 
within keystroke data obtained from two different datasets (Rossetti & Van Waes, 2022b; 
Vandermeulen, De Maeyer, et al., 2020). A variety of change points were detected based 
on five indicators from the keystroke data: document length, distance between product 
and process, relative position, length of source use, and mean pause length. Thereafter, 
a rule-based approach was applied to select one change point which would be indicative 
of a shift from the first draft of the text to a second phase in which the writer revises and 
finalizes their first (intermediate) draft. The results of both steps are discussed below. 

5.1 Automated detection of change points 

First, it was found that all models showed high goodness-of-fit, indicating that the 
observed values are close to the expected values of the models. This shows that the time-

series decomposition into trends, abrupt changes, and noise fit the keystroke data well. 
Intuitively, as the models became more complex (that is, a higher number of maximum 
change points was allowed), the model fit increased. The overlap with the manually 

annotated change point differed substantially per indicator: length of source use and 
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mean pause length showed to be useless for detecting the manual annotated change 
point, while the relative cursor position showed to be the most promising indicator.  

The fact that the length of source use was less useful might be explained by the fact 

that the interaction with sources was very limited in the current datasets, which might 
have resulted in the algorithm not being able to detect a substantial change in the length 
of source use. In the manual annotation, source use was often seen as an additional 

indicator, indicating that it might not be the best indicator for a univariate model. An 
alternative reason for the low accuracy of the source use indicator could be that the 
algorithm looks into a specific point in time where the length of source use changes, 

while the manual annotators merely looked for an overarching pattern of source use. 
Hence, the length of source use might be better used to identify a time period where the 
shift to the second phase should take place, rather than a specific point in time. Future 

work should look into datasets with more extensive source use as well as focusing on a 
time range to test these hypotheses. 
For the mean pause length the low accuracy might also be due to the fact that the pauses 

were often used as an additional indicator, rather than a stand-alone one. In addition, a 
longer pause might be indicative to various other activities rather than reading and 
evaluating the text produced so far, hence not necessarily be related to the start of a 

second phase. Pauses could also indicate other activities, such as reading sources, time 
off-task, planning for sentence production, irrelated to the start of a second phase 
(Medimorec & Risko, 2017). Future work should look into the added value of using eye-

tracking to get a better indicator for reading and evaluation of the text.  
Overall, document length, distance between product and process, and relative 

position, showed to have reasonable to high overlap with the manual annotated change 

point. Moreover, these indicators showed distinct change points indicating it might be 
useful to consider multiple measures simultaneously. However, interestingly the 
(experimental) multivariate model did not prove to outperform the univariate models. 

Models with a larger number of maximum change points were shown to have a higher 
accuracy in terms of the overlap with the manual annotated change point. However, this 
also means that it becomes more difficult to select the correct change point amongst the 

candidates, hinting at a trade-off between accuracy and interpretability. This further 
stressed the importance of evaluating both based on model fit as well as interpretability, 
in this case measured as overlap with human annotation.  

5.2 Automated selection of change points 

Given the amount of identified change point candidates, the next step of the analysis 
focused on selecting the correct change point overlapping the manual annotated change 
point. A combination of overarching filters and a rule-based model was used. Combined 
this resulted in relatively low accuracy: only 31% of the change points could be correctly 
identified. For 49% of the sessions, the selected change point was within 60 seconds of 
the manual annotated change point. So, for more than half of the sessions, the algorithm 
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was unable to properly select the right candidate. This stresses the complexity of finding 
one specific change point. Manual inspection showed that there are quite some 
irregularities in the writing process that might be selected as change point candidate by 

the model. Some of the more common errors (e.g., the algorithm not picking up on writers 
revising backwards through their text), could be added to the rule-based algorithm. 
However, there is a trade-off between having an extensive set of rules (hence higher 

accuracy), versus interpretability and generalizability of the model (also known as ‘the 
principle of parsimony’). Applying more rules will make the model harder to interpret for 
humans, and might result in overfitting of the data, which would reduce generalizability. 

Accordingly, we did not further specify the rules. Future work could look into machine 
learned algorithms to identify (a) whether a change point is present, and (b) which of the 
candidates is the correct change point, with a larger sample size allowing for a test-train 

split and cross-validation to counter overfitting. 
Finally, it should be noted that the manual annotators also showed difficulties in 

selecting the starting point of the second phase, which is a common issue in annotating 

keystroke data (Conijn et al., 2021; E. Lindgren et al., 2019). One might question whether 
the manual annotation correctly represents the ground truth. An alternative method 
would be to let the writers themselves indicate the change in phase post-hoc, which 

might be used to further train the model. Similarly, the writer might indicate a change in 
phase concurrently, closely resembling writer-based versioning. A tailored user interface, 
for example using specific tabs to separate phases of the writing process could help here 

(e.g., see the planner tool in Li et al., 2024). However, for writer-based versioning, the 
writer needs to be aware of these changes in processes, and for concurrent detection 
even be able to immediately identify such a change. In addition, identifying changes 

concurrently will influence the (mouse and) keystroke data, resulting in changes that 
might be more easily noticeable by an algorithm and hence might generalize less well 
across sessions without writer-indicated change points. 

5.3 Limitations & Future work 

This study is obviously limited by the specific type of algorithm and pre-processing 
chosen to automatically select the change point. Other algorithms could have resulted in 
higher accuracies. The advantage of using the BEAST algorithm is the fact that it is an 
ensemble algorithm, which combines multiple weaker models into one (Zhao et al., 
2019). Experimental evidence has shown that ensemble algorithms outperform single-
best-model approaches (Hastie et al., 2009). In addition, the model also outputs the 
probability of each detected change point, which was consequently used in filtering the 
change points. Finally, the algorithm explicitly models the uncertainty, by providing 95% 
credible intervals around the detected change point, which arguably works well for 
complex and noisy data such as keystroke data.  

Of course, some improvements to the algorithm are possible. Additional features 
could have been passed to the BEAST algorithm or alternative rules could have been 
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applied to select the final change point. For example, eye-tracking could have been 
included to more accurately identify sustained reading of the text written-so-far (as 
detailed above). Natural Language Processing could have been applied to more 

accurately detect if the majority of the text has been written e.g., by identifying whether 
a final concluding paragraph has been written or when the semantics do not change 
considerably anymore (e.g., see Tian et al., 2024). Finally, rather than allowing the 

change point to be possible at every 1 (or 5 or 10) seconds, it might have been worth it 
to constrain the location of the change point to previously studied boundaries in writing 
processes, such as after revision events (Conijn et al., 2024), after a break in linearity 

(Buschenhenke et al., 2023), or after a P-burst (Baaijen et al., 2012).  
Further, some of the current indicators are based on characteristics of the final 

product, as they were relative to the final product length, or the total number of pauses. 

In this way, the analysis could not be used to provide real-time segmentation of the 
writing process. Hence, the algorithm cannot be used for real-time writing process 
interventions. Other metrics, such as text length relative to the amount of text produced 

so far, or the plain (log) cumulative number of insertions or deletions would have allowed 
for this real-time processing. However, it should be noted that it already proved difficult 
to identify change points at the end of the writing process, making it arguably more 

difficult to identify change points concurrently. In fact, the BEAST algorithm has lower 
robustness in identifying change points close to the end of a sequence, indicating that 
real-time segmentation of writing process would be difficult. Robust real-time 

segmentation might be necessarily done with a delay (e.g., a switch might only be noticed 
after x minutes) or might require alternative algorithms. Future work should examine to 
what extent the current approach – albeit with new indicators – would allow for real-

time segmentation.   
In addition, one could argue that the current macro approach focuses too much on 

the segmentation being discrete and sequential, which does not correspond with the 

complex non-linear nature of cognitive writing processes. Although our approach does 
give insight into recursiveness in revision, e.g., multiple revision phases, an activity-based 
segmentation (as in Sala-Bubaré et al., 2021 for example), could have resulted in a finer-

grained insight into the recursiveness of the writing process. However, here, we were not 
interested in a large number of transitions, but rather focused on distinctive transitions in 
the writing process. We believe that these could be used as points-of-interest (Leijten et 

al., 2014), which could be further explored in future work.  
Finally, although already two distinct genres of writing were selected (source-based 

writing and text simplification), it is unknown how well the algorithm generalizes to other 

datasets of the same genre or even other genres and contexts with less revising behavior, 
as for example found in novice writers. It is also uncertain whether algorithm 
performance varies across datasets, genres, or contexts. Future work should include 

additional datasets to better assess the algorithm's generalizability. For an overview on 
writing development of novice writers, see e.g., Beard et al. (2009) or Miller et al. (2018) 
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or for examples of more complex writing and professional non-linear revising behavior, 
see e.g., multi-session writing, Buschenhenke et al. (2023) or Leijten et al. (2014). 

5.4 Implications 

The paper has several implications for writing research and practice, focusing on the 
change points themselves (as points-of-interest) or on the segments between the points 
of interest. First of all, the points of interest – in particular as shown on the phase analysis 
dashboard – can provide additional feedback to learners on their writing process, which 
may be used as an additional feature in a process report to reflect upon (Vandermeulen 
et al., 2022; Vandermeulen, Leijten, et al., 2020). In addition, this type of visualization 
can be used to improve the efficiency and accuracy of manual annotations of points-of-
interest in keystroke data. It should be noted here that the change points identified were 
directly related to indicators used in the manual annotation of revision phase, so they 
might not be applicable to other types of points-of-interest such as the end of an initial 
planning phase, or a distinctive shift in (non-)linearity. Yet, the indicators are relatively 
general (e.g., document length, cursor position) and focus on the main points presented 
in Inputlog’s process graph, indicating their utility for writing practice and research. 
Future work should identify to what extent it is possible (and useful) to label the change 
points, and whether different variables could label these change points more accurately. 

Second, one could use the change points to segment the writing process in different 
phases, allowing for analyses across all the different phases, rather than aggregating 
keystroke data over the full writing process (e.g., Xu & Xia, 2021). In addition, one could 
remove a specific phase, if it is out of interest for the specific analysis (e.g., removing the 
final revision phase as in Baaijen et al., 2012). Finally, one could test whether the type 
of processing is different in different segments, focusing for example on different pause 
patterns across the segments (cf. Roeser et al., 2025). 

6. Conclusion 

In this study we tried to explore the possibilities to automatically determine change points 
in writing processes, and use this as a basis to identify the change point that indicates the 
transition between the first (dominant focus on writing) and the second phase (dominant 

focus on rereading and revision) of a writing process. Our results showed that the BEAST 
algorithm was useful in detecting change points in keystroke data. In particular, relative 
position, followed by document length and distance product/process showed to be 

promising indicators to determine change points. Unfortunately, our results showed that 
it is still difficult to identify the change point connected to a second phase. Yet, we 
contend that our approach to identify change points is still useful to explore a specific 

subset of points-of-interest within the writing process or to divide the writing processes 
in specific segments with their own functionality.  
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