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1. Background

The use of artificial intelligence (Al) to grade writing samples continues to garner increasing
attention from all sectors of education, including the testing industry, academia, classroom
teachers, educators, school/district/state officials, as well as the media. Al scoring, also known
as automated scoring, was first introduced in the 1960s by Page (Page, 2966; Dikli, 2006). Since
then, the capability has been operationally implemented in many high-stakes, large-scale
writing assessments to generate scores or evaluations for millions of text responses each year.
At the time of this writing, the amount of research literature including peer-reviewed
publications on this topic is extensive and continues to grow. One of the primary motivations
for exploring Al-driven scoring is the promise of enhanced objectivity and consistency (Zhang,
2013; Yao et al., 2019b; Bennett & Zhang, 2016). Traditional human scoring can be susceptible
to biases, fatigue, and variations in interpretation, leading to inconsistencies across different
raters and time periods (Williamson et al., 2012; Bejar et al., 2016). Al systems, on the other
hand, offer the potential to apply predefined scoring rubrics consistently, ensuring a more
standardized and consistent writing evaluation process (Bejar et al., 2006; Bennet & Bejar,
1998; Zhang & Bennett, 2022). Furthermore, Al can significantly reduce the time and
resources required for human scoring, especially in large-scale assessments and daily
classrooms, freeing up educators to focus on other critical aspects of teaching and learning
(Johnson & Zhang, 2024; He, Gao & Chen, 2021).

The rise of generative Al and large language models (LLMs), which simulate human
language, in recent years has introduced both significant opportunities and challenges. The
use of LLMs is revolutionizing the capabilities and accuracy of automated scoring systems,
opening new avenues for even more efficient and effective assessment practices. The
feasibility of using LLMs for scoring is a rapidly growing area of research. Studies have explored
various aspects, such as the alignment of LLM-generated scores with human grading rubrics
(e.g., Fang, Lee, and Zhai, 2023), the impact of training data size on model performance (e.g.,
Zhang, Johnson, and Ruan, 2024), and the issues related to grading biases using LLMs (e.g.,
Johnson & Zhang, 2024). Despite the progress, many open questions remain. These include
how different types of constructed responses, such as extended writing or short response
items, affect Al scoring performance; whether the subject domain (e.g., science, engineering,
mathematics, history, literature) influences the accuracy and fairness of Al scores; and what
best practices for training scoring models ensure they generalize well across diverse student
populations. The published studies underscored the great potential of LLMs to enhance the
efficiency and consistency of scoring; but in the meantime, they highlight the complexities
involved in ensuring their responsible use. Responsible use of Al calls for thoughtful evaluation
of Al scoring in assessment, where the core aspects include scoring accuracy, fairness, and
explainability (AERA, APA, & NCME, 2014; ETS, 2025). In particular, we argue that effective
methods for detecting and mitigating biases in LLM-based Al scoring models and
understanding inherent biases in the training data are perhaps one of the most crucial areas
of research.
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2. Research problem

LLM-based Al scoring models, which contain millions or even billions of parameters, require
substantial training samples to effectively handle complex tasks. This requirement is
particularly pronounced for certain subgroups of interest, such as demographic intersections
or top or bottom score levels, where sample sizes may be even smaller. An unbalanced
training sample can lead to scoring biases, compromising the fairness and accuracy of the
assessments (Morris et al., 2025; Zhang et al., 2024). To collect student-written responses is
both costly and time-consuming, and may be impractical for certain assessment programs. A
potential solution to this challenge is to use generative Al to create synthetic writing samples,
thereby artificially augmenting the available data. This approach can help balance and
diversify the training samples and mitigate potential biases (Fang et al., 2023). There is a clear
need for studies that address this critical issue, exploring the efficacy and implications of using
synthetic data to enhance Al scoring models.

One basic question, however, is whether training a smaller discriminative language model
using samples from a larger generative model is a sound approach. This question has been
addressed in existing research in the natural language processing (NLP) domain. Studies have
established that it is feasible, and in some cases beneficial, to train a smaller neural model
with the output of a larger one (e.g., for model compression in Sun et al. (2019) and
regularization inYuan et al. (2021)). Initial work by Hinton, Vinyals, and Dean (2015)
demonstrated this feasibility where they trained a decision tree on the outputs of a neural
network, which was itself trained on the data set of interest. In the case of language models,
cross-lingual transfer has been a popular approach to address the lack of data in low-resource
languages, where sufficient training data is unavailable. The recent proliferation of variants of
LLMs and their ease of access has further facilitated large data generation, conforming to user
preferences. Those models, known as instruction-following models, are a type of language
model designed to better understand and execute user instructions. These models are fine-
tuned to follow specific prompts or commands given by users, making them more aligned with
user intentions compared to general-purpose language models. Even before instruction-
following models, LLMs have been used to augment data for downstream tasks. Yoo et al.
(2021) reported enhanced performance with the use of synthetic data from GPT-3 on several
downstream tasks by fine-tuning BERT (Devlin et al., 2019). Among instruction-following
models, ChatGPT was used by Dai et al. (2023) to generate synthetic data and trained with
this augmented data for text classification tasks using BERT. Whitehouse, Choudhury, and Aji
(2023) used ChatGPT and GPT-4 for augmenting data for fine-tuning smaller multilingual
models. For further detailed surveys, the reader may refer to Chen et al. (2023), Long et al.
(2024) and Ding et al. (2024).

In the context of Al scoring, limited prior research is available that explored data
augmentation by using the Al-generated responses to balance under-represented classes,
with few examples. Morris et al. (2025) fine-tuned a DeBERTa-V3-large (He et al., 2021) to
score NAEP math items and used Coedit-XL to augment high-scoring responses (scores 2 and
3), which were underrepresented in the training sample (Raheja et al., 2023). They used
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existing responses scored 2 and 3 to generate additional “paraphrased” responses that were
used to balance the labels. Fang et al. (2023) used GPT-4 (OpenAl, 2023) with customized
prompts to augment data for under-represented minority students for the purpose of
automatic scoring of science items. In this study, we attempt to expand this line of research
by systematically examining how data augmentation affects Al scoring model performance in
terms of scoring accuracy and fairness. We are particularly concerned with three research
questions:
1. How similar are Al-generated essays to student essays?
2. How is the prediction accuracy of scoring models that are trained with Al augmented
samples?
3. Are models trained using Al augmented samples fair for different racial/ethnic
groups?
The remainder of the paper is organized as follows. In Section 3, we provide detailed
information on the data set, sample partitions, Al essay generation, training and evaluation of
scoring models, and model interpretations. Section 4 presents the findings for each of the
three research questions. Finally, Section 5 offers a summary discussion, which also includes
a discussion of the limitations of this study and suggestions for future research.

3. Methods

3.1 Data set

We used the public PERSUADE 2.0 data set, which includes essays written by 6th to 10th
graders in the U.S. (Crossley, 2024). In this study, we analyzed seven prompts that required
students to read source materials and write an essay. Table 1 lists the instructions associated
with each prompt. The source materials are typically referenced in the writing instructions;
however, these materials are not publicly accessible.

Table 1. Prompts and instructions

Prompts Writing Instructions
1- Facial In the article “Making Mona Lisa Smile,” the author describes how a new technology
Action called the Facial Action Coding System enables computers to identify human

emotions. Using details from the article, write an essay arguing whether the use of this

technology to read the emotional expressions of students in a classroom is valuable.

2-Electoral  Write a letter to your state senator in which you argue in favor of keeping the

College Electoral College or changing to election by popular vote for the president of the
United States. Use the information from the texts in your essay. Manage your time
carefully so that you can read the passages; plan your response; write your response;

and revise and edit your response. Be sure to include a claim; address counterclaims;
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Prompts Writing Instructions
use evidence from multiple sources; and avoid overly relying on one source. Your
response should be in the form of a multiparagraph essay.

3-Car-free Write an explanatory essay to inform fellow citizens about the advantages of limiting

Cities car usage. Your essay must be based on ideas and information that can be found in the
passage set. Manage your time carefully so that you can read the passages; plan your
response; write your response; and revise and edit your response. Be sure to use
evidence from multiple sources; and avoid overly relying on one source. Your response
should be in the form of a multiparagraph essay.

4- In the article, “Driverless Cars are Coming,” the author presents both positive and

Driverless negative aspects of driverless cars. Using details from the article, create an argument

Cars for or against the development of these cars. Be sure to include: your position on
driverless cars; appropriate details from the article that support your position; an
introduction, a body, and a conclusion to your argumentative essay.

5- In “The Challenge of Exploring Venus,” the author suggests studying Venus is a worthy

Exploring pursuit despite the dangers it presents. Using details from the article, write an essay

Venus evaluating how well the author supports this idea. Be sure to include: a claim that
evaluates how well the author supports the idea that studying Venus is a worthy
pursuit despite the dangers; and explanation of the evidence from the article that
supports your claim; an introduction, a body, and a conclusion to your essay.

6-Face on You have read the article “Unmasking the Face on Mars.” Imagine you are a scientist

Mars at NASA discussing the Face with someone who thinks it was created by aliens. Using
information in the article, write an argumentative essay to convince someone that the
Face is just a natural landform. Be sure to include: claims to support your argument
that the Face is a natural landform; evidence from the article to support your claims;
an introduction, a body, and a conclusion to your argumentative essay.

7-A You have just read the article, “A Cowboy Who Rode the Waves.” Luke’s participation

Cowboy in the Seagoing Cowboys program allowed him to experience adventures and visit

many unique places. Using information from the article, write an argument from
Luke’s point of view convincing others to participate in the Seagoing Cowboys
program. Be sure to include: reasons to join the program; details from the article to

support Luke’s claims; an introduction, a body, and a conclusion to your essay.

Only one rater score is available in the publicly released data set, although all essays were
scored by two raters using a 6-point scale rubric. The authors reported an inter-rater quadratic
weighted kappa of .745 and a correlation coefficient of .750 (Crossley et al., 2024).
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Consequently, we did not conduct any true score evaluation (Johnson & McCaffrey, 2023) for
the scoring models. The total sample ranged from 1,372 to 2,167 student essays across the
seven prompts. The male and female students were relatively evenly distributed, with the
proportion of female students ranging from 47.4% to 53.8% across prompts. The majority of
the students were English-proficient, accounting for 76.8% to 97.5% of the sample across
prompts. White students accounted for 39.3% to 49.2% of the sample across prompts.
Hispanic/Latino students comprised 24.1% to 30.4% of the sample across prompts. About one-
fifth were Black/African American students (15.0% to 20.0% across prompts). A small number
of students were Asian/Pacific Islander, ranging from 2.9% to 6.0% across prompts. The other
racial/ethnic groups, which included “Two or more races,” “American Indian/Alaskan Native,”
and “Unidentified,” were very small in this data set; in combination, they accounted for 3.3%
to 5.2% of the sample across prompts.

Table 2 shows the distributions of essay score and response length in each prompt. Six of
seven prompts have average rater scores between 2.85 (“Exploring Venus”) and 3.19
(“Driverless Cars”). Prompt “A Cowboy” appeared to be an outlier with a noticeably lower
mean rater score of 2.41 and a smaller standard deviation of 0.81. The average essay length
ranged from 288.6 words (“A Cowboy”) to 451.2 words (“Car-free Cities”) across prompts,
confirming that these essays were long, extended writing.

Table 2. Student essay score and length descriptions

Prompt N Score Words

1-Facial Action 2,167 2.85 (sd =1.09) 337.5(sd =139.1)
2-Electoral College 2,046 2.97 (sd =1.20) 398.3 (sd = 164.3)
3-Car-free Cities 1,959 3.10 (sd =1.03) 451.2 (sd = 180.1)
4-Driverless Cars 1,886 3.19 (sd =0.92) 403.4 (sd = 146.2)
5-Exploring Venus 1,862 2.85(sd =1.12) 351.6 (sd = 145.6)
6-Face on Mars 1,583 2.95(sd =1.01) 336.0 (sd = 131.5)
7-A Cowboy 1,372 2.41 (sd = 0.81) 288.6 (sd = 121.9)

3.2 Sample partitions

The content generation, scoring model training, and scoring model evaluation were conducted
on a prompt-by-prompt basis. For each prompt, the student samples, referred to as student
essays, were randomly and evenly divided into three subsets. One subset was used for feeding
the GPT generators. Another subset was used to address RQ1, which compared the linguistic
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features between Al responses and human responses. After addressing RQ1, the first and
second subsets, consisting of two-thirds of the total student samples, were combined to train
the prompt-specific scoring models. The final subset was reserved for evaluating those
prompt-specific scoring models and was not used until the evaluation phase.

3.3 Generating synthetic essays using GPT

As mentioned in the statement of the research problem, the motivation for data
augmentation using samples from a LLM stems from the fact that discrepancies in the size of
subgroups of interest within a data set can lead to poor performance on under-represented
subgroups. For traditional machine learning methods, reweighting the training criterion or
resampling/oversampling from the data set can often mitigate this issue. However, unlike
traditional models with manual features, deep learning models learn their own feature
representations of the data based on the data to which they are exposed. Oversampling from
under-represented subgroups does not alleviate this issue, as deep learning models require
diversity in the training data, and duplicated data leads to poor generalization (Hernandez et
al.,, 2022; Tirumala et al., 2023). Recent methods for training language models have
incorporated de-duplication (Lee et al., 2022) as a key element of data processing.

One avenue may then be to use data sampled from a LLM that is constrained by design to
be similar to the training data, particularly for the under-represented subgroups, yet not
identical to avoid degradation of the performance. Our approach lies along those lines, where
we generate data across all prompts and score levels. Formally, we can think of this as distilling
a subset of knowledge from an LLM f to a smaller Al scoring model f'. This LLM has been
trained on a very large data set X of trillions of tokens (Touvron et al., 2023) and models the
conditional distribution of sequences of tokens given some input tokens. It is worth noting
that f' has also been pre-trained on a (usually smaller) data set X'. The scoring task, then,
represents training on a downstream task with data X"/, |X| > |X'| > |X"'|, where X"
consists of (essay, score) pairs (x",y),x"" € X",y € Rory € N. The task of generating
augmented samples is then X; ~ f(Xp). Where X,, are the set of prompts that direct the
model outputs toward the desired content and syntax and X, are generated sentences or
paragraphs. The model fy, where 6 denotes the weights of the model f’, can then be trained
by minimizing the mean squared error between the human scores in the training data
augmented X, with the generated data X, = X"' U X;,. The objective is then minimizeZ(Y -
17)2, Y= fo(X2), where Y are the outputs from the model during training.

For creating the prompts (or instructions) X,, to guide the model we used the grading
rubric and some custom directives which generated essays of desired quality. Specifically, we
divided the prompt into five parts:

1. System Prompt: An initial system directive.

2. Custom Directives: Custom directives for edge cases.

3. Essay Properties: Rubric-driven properties that an essay should have. For example,

the following was given for generating essays with score level 1:
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The essays should demonstrate VERY LITTLE OR NO
MASTERY of writing and critical thinking and will
have several errors and lapses with following
qualities:

- They will have SOME RANDOM typos, misspellings,
syntactic errors and

punctuation errors.

- Major flaws in sentence structure, and errors in
mechanics which interferes

with meaning.

- Disorganized, disjoined with limited vocabulary

- They have NO CRITICAL THINKING, develop no viable
point of view or provide

no to little evidence

- These would get a SCORE OF 1 from a scale of 1 to
6 if judged by humans.

4. Title and Generation Template: This portion mentions the title of the essays and the
number of essays to generate for a given score.

5. Prompt Directives: This portion contains generic guardrails for the model. We used
the following to guard the generated syntax of the model from being too informal and
to mimic the style of school-going children.

Each essay should mimic the style of a schoolgoing
child and should pass as if written by a child up
to grade 12.

The child is writing this to best of his/her
ability knowing it'll be

scored so avoid informal usage like "z" instead of
"s" or "u" instead of "you".

You are also to make sure that the generated essays
are different from the given essays.

The generated essays must also be of a similar
length to given essays.

In addition to the instructions mentioned above, we also provided sample essays written by
students for a given prompt and score and asked the generator to produce similar but
different responses. This was done to ensure that the style and syntax of the generated essays
were similar to those of the student data while the content remained different. Each
generation call to the model was accompanied with the necessary rubric, instructions, and
example essays for the given prompt and score level. For each generation call, we randomly
sampled five essays with replacement from the subset earmarked for generation, which was
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roughly one third of the total student essays (described in Sample Partitions in Section 3.2),
and included with the instructions.

The generation was done separately for GPT-4 and GPT-40. For GPT-4, we generated
approximately 120 essays per score level; for GPT-40, we generated approximately 300 essays
per score level. We further randomly sampled a small number of Al essays from each prompt
for scoring model evaluations. It is worth noting that while we made an equal number of
generation attempts (approximately 250 per score level) for both GPT-4 and GPT-4o, the
responses from GPT-4 were of inferior quality and could not always be parsed reliably.
Consequently, the final number of responses was approximately 120 per score level for GPT-
4 and approximately 275 per score level for GPT-40. The final counts of Al essays per score
level for GPT-4 and GPT-40 used in scoring model training are given in Table 3. An example
configuration for prompting the generation of score-level 1 essays is given in Appendix A.
Identical template was used for all score levels.
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Table 3. Counts of Al essays per score level in model training

GPT-4 GPT-40

Score Level Score Level
Prompt 1 2 3 4 5 6 Mean Score 1 2 3 4 5 6 Mean Score
1-Facial Action 153 155 157 120 113 112 3.27 (sd=1.72) 274 283 283 268 280 240 3.44 (sd=1.72)

2-Electoral College 121 132 123 87 122 96 3.36 (sd=1.68) 248 278 289 260 249 243 3.46 (sd=1.68)

3-Car-free Cities 142 144 127 121 142 119 3.42 (sd=1.70) 268 289 279 287 260 265 3.47 (sd=1.67)

4-Driverless Cars 142 132 128 112 127 109 3.37 (sd=1.71) 252 250 274 273 261 246 3.50 (sd=1.69)

5-Exploring Venus 118 128 134 99 119 119 3.46 (sd=1.71) 275 290 242 248 272 264 3.47 (sd=1.68)

6-Face on Mars 113 117 116 89 111 90 3.37 (sd=1.71) 274 287 282 268 270 269 3.47 (sd=1.73)

7-A Cowboy 100 87 101 84 68 73 3.30 (sd=1.69) 279 277 275 245 272 268 3.47 (sd=1.70)
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3.4  Linguistic feature extraction

To address the first research question, we processed student and Al essays through a well-
established, commercial automated essay scoring system, e-rater®, that (in its most recently
released version) produced nine features that measure surface-level linguistic characteristics
such as grammatical accuracy and vocabulary usage. Table 4, adapted from Yao, Haberman,
and Zhang (2019a) and Yao et al. (2019b), provides high-level descriptions of these linguistic
features. Chen, Zhang, and Bejar (2017) offers a more detailed explanation of three of the nine
features (i.e., Grammar, Mechanics, and WordUsage). Additionally, we calculated the
logarithm of the number of words to compare the response lengths between Al essays and
student essays.

Table 4. Extracted text features for human and Al essays

Feature Description

Grammar Minus the square root of the number of grammatical errors detected per word
Syntax A measure of the diversity of syntactic structure of the sentences in a response
Mechanics Minus the square root of the number of mechanics errors detected per word

WordUsage Minus the square root of the number of usage errors detected per word

Collocation A measure of correctness of use of collocations and prepositions in daily life
NUnit Logarithm of the number of discourse elements

UnitLength Logarithm of the average number of words per discourse element

WordLen Average number of characters per word

WordFreq Minus the median Standard Frequency Index value of words

TextLen Logarithm of the number of words in a response

3.5 Base and augmented scoring model training

For scoring models, we fine-tuned pretrained DeBERTa-V3-XSmall models (He et al., 2021).
The pretrained DeBERTa-V3-XSmall model has 12 layers with a hidden size of 384 and 48M
parameters. We enabled training of all layers in the model. Instead of adding a pooling layer
commonly used for classification tasks, we simply averaged the outputs from the last hidden
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layer and projected them to a single dimension. For updating the parameters, we used the
AdamW optimizer (Loshchilov & Hutter, 2017). All scoring models were trained on a prompt
basis, that is, prompt-specific, applying the same model training and parameter settings for
all prompts. We isolated the test sets before training and used 10% of the training set for
validation. All scores were normalized in the range of 0 — 1 during training and rescaled to
1 — 6 for evaluation. During the scoring model training process, we monitored mean squared
error (MSE) loss and the quadratic weighted kappa (QWK) (Haberman, 2019) between
observed human scores (i.e., one human rating per response) and model predictions. We
saved the model after every training epoch (i.e., one sweep through the training data) and
selected the final model for evaluation based on the lowest MSE loss and highest QWK.
Appendix B gives full details of the configuration of the scoring model training process.

The “base” models were trained using student essays only and the “augmented” models
on a mix of student and Al-generated essays. Additionally, we downsampled the student
essays to 20%, 40%, 60%, and 80% during the scoring model training and compared the model
performance. Specifically, for instance, in a “100% model,” all student essays were used; in
“80% downsampled models,” 80% of the student essays were used for training the scoring
models. So, as we downsampled student essays, the total model training sample sizes
decreased. Further, since the number of Al essays remained constant in training the scoring
models for a prompt, the proportion of Al essays in the training sample increased in
augmented models accordingly as we downsampled the student essays.

Using “P1-Facial Action" for illustration, Figure 1 shows the training sample size by score
level for base and augmented models. The sample size patterns for the other prompts are
similar to those of prompt “P1-Facial Action” and are fully given in Appendix C. For the base
models, when only 20% of student essays were used, the training sample was relatively small.
In the case of “P1-Facial Action", the training sample sized in the “20% downsampled models”
was only about 270. Across prompts, the training sample size ranged from 182 to 289 across
prompts (see Appendix C for details). When using the full (100%) student sample, the base
model training samples increased substantially: In “P1-Facial Action,” for example, the training
sample size was 1447; and across all prompts, the training sample size ranged from 912 to
1,447 across prompts. Also noted in Figure 1 is that score categories 1, 5, and 6 contained very
few student essays. This pattern became even more pronounced when student essays were
further sampled down.

Augmenting the base model training with Al (GPT-generated) essays significantly
increased the total sample size at each score level. We opted to augment the data with respect
to its original proportions. While data corresponding to underrepresented score points can be
augmented selectively, earlier research on Al scoring suggested that it may not be desirable
as it will affect the predictive distribution of the model which may deviate too much from the
population (Zhang et al., 2012). By augmenting across all prompts and score points, we
remained faithful to the original student essay score distribution. In our current approach, the
score levels showing data scarcity (e.g., 1, 5, and 6, for which situation was even worse in the
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downsampled models) became better represented in the model training process while
maintaining their original proportions in the total training sample.

The resulting total training sample sizes in GPT-4 augmented models (student and Al
essays combined) ranged from 1,425 to 2,257 across prompts and from 2,528 to 3,075 in GPT-
40 augmented models. Thus, in the case of “augmented” scoring models, when student essays
were sampled down by 80% (i.e., the 20% category), most of the training samples were Al-
generated. Even when 100% of student essays were used in the augmented models, a large
portion of the model training sample was still coming from generative Al, especially for those
augmented by GPT-40 essays.
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Figure 1: Base and augmented model training sample sizes by score level

3.6 Model evaluation on held-out test data sets

For each prompt, the scoring models were evaluated on the samples corresponding to the
given prompt in the held-out test data set. The prompt-specific model performance was
assessed separately on student essays and Al-generated essays. Specifically, the student
essays in the test data set were set aside during the initial data partition (described in
Section 3.2), while a small number of Al-generated essays were randomly chosen and set aside
for model evaluation after essay generation. Figure 2 shows the test data sets of student
essays; the sample size ranged from 521 to 720 in total across the seven prompts.

To address Research Question 3, we examined the prompt-specific scoring model
performance for each racial/ethnic group. The racial/ethnic group compositions in the test
data resembled those in the total sample. The Asian/Pacific Islander student group was very
small in size. Specifically, the sample sizes ranged from 255 to 345 for White students, 69 to
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142 for Black/African American students, 113 to 227 for Hispanic/Latino students, and 15 to
43 for Asian/Pacific Islander students.

Race Distribution by Prompt for Test Set

1-Facial Action
2-Electoral College
3-Car-free Cities

4-Driverless car

prompt_name

5-Exploring Venus

race_ethnicity
6-Face on Mars 1-White
3-Blacki/African American
2-Hispanic/Latino

7-A Cowboy 4-Asian/Pacific Islander
5-Others
o 100 200 300 400 500 600 700
Count

Figure 2: Description of student essays in text data by racial/ethnic group

The models were evaluated based on two criteria: prediction accuracy and fairness. For
prediction accuracy, we examined the correlation coefficient, QWK, and standardized mean
score difference (SMD) between human and Al scores on student essays. For fairness, we
computed the mean difference in standardized scores (MDSS) between human and Al scores
in each racial/ethnic group, as well as the QWK between human and Al scores. This choice of
evaluation metrics was based on ETS (2021), Johnson & McCaffrey (2023) and Haberman
(2019). Note that two different metrics were used for evaluating mean differences between
human and Al scores. On the overall model evaluation, we used SMD. The SMD is calculated
as SMD = (H — M) /+/(s? + s%)/2, where the mean differences between human score H
and Al score M is divided by the pooled standard deviation of H and M. While SMD has been
commonly suggested in the literature for evaluating the bias of Al models, one issue with SMD
is that it can be sensitive to the differences in scales between human and Al scores. This
sensitivity to scales may particularly distort the results and interpretation on the subgroup
level where scores for some subgroups may concentrate within a narrow region in the rubric
scale. Therefore, for fairness evaluation on the subgroup level, we used the MDSS metric by
first removing the scale differences between human and Al scores: MDSS = H' — M', where
H' and M’ are standardized scores. For each metric presented in the tables and figures in the
Results section, we included widely-accepted industry benchmarks for evaluating Al essay
scoring models: a threshold of 0.7 for QWK and correlation coefficients, 0.15 for SMD, and 0.1
for MDSS.
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3.7 Interpreting the model outputs

In this section, we describe the method for interpreting the predictions from the trained
model f'. We analyzed token importance for the model’s predictions given by our chosen
method DecompX (Modarressi et al., 2023). We emphasize that while we examine individual
tokens, we do so for post-hoc interpretability of the model’s predictions and not to assess or
refine model’s performance. Token importance is a simple method to gain some insights into
a model’s decision making but cannot be used to assess model accuracy or performance. In
other words, we do not claim that tokens alone, or token importance, are indicative of model
performance. Instead, we employ them for better understanding the model behavior. As
DecompX takes the contributions of all the layers of the model into account, it provides a
human-interpretable output to potentially diagnose any issues with the model.

As aforementioned, we use an existing method DecompX proposed by Modarressi et al.
(2023). DecompX decomposes the tokens based on their vector norms and provides relative
contributions for each token. It aggregates the token importance values over all the layers of
a given model. While Modarressi et al. (2023) also investigated pooler and classification head
outputs, we did not include those as we did not use a pooler. DecompX operates on the
intermediate representations of the model, which in our case is DeBERTa, which is an encoder
only model. Unlike the GPT model family, an encoder does not generate any new language
tokens but only creates representations in vector spaces for various other language tasks like
sentence classification or, as in our case, essay scoring.

The key components of these models are Attention, particularly Multi-Head Attention and
Position-Wise Feedforwad blocks. Attention in neural language models refers to learned scalar
values which reweighs intermediate representations. Attention in the context of neural
language models was first proposed in Bahdanau, Cho, and Bengio (2014), who used it to align
token representations of two different languages for machine translation. A rough description
of their version of Attention can be written as y,,; = Wy(concat <y, c>), ¢; =
ilag; (hx]-)) ,y.; = 1(Bahdanau et al., 2014). Here x;, y; are, respectively, the tokens in the
source and target languages being translated and hx; is the hidden representation of the
token x;, ¢ is a context vector, which is a convex sum of representations of the source language
tokens. a; are computed via another small neural network based on (a) the current token and
(b) a combination of all the given input tokens in the source sentence. t denotes the index of
the token. This was expanded to Multi-Head Attention in Vaswani et al. (2017), where a; are
M:VK(X)), o being the softmax operator ;;p—(g)) The final output
from the attention block is computed as al, (x). Wy, Wy, Wy, in the ppre(l;eding are matrices
of similar shape. In Vaswani et al. (2017), they are written as Q, K, V, referring to Query, Key
and Value. The authors interpreted these as retrieving and querying certain values based on

calculated as a = o

keys, analogous to document retrieval.

The final step al}, (x) is equivalent to a;x; as in Bahdanau et al. (2014), except for the
additional transformation Wy, (x). The term Multi-Head Attention comes from the fact that
multiple such operations are performed in parallel in Vaswani et al. (2017), and the result is
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concatenated. Further technical details of Multi-Head Attention and Position-Wise
Feedforwad blocks can be found in Vaswani et al. (2017).

Pooler and classification head were terms introduced for BERT by Devlin et al. (2019) and
they refer to specific neural network blocks. The Pooler reduces the multiple token
representations to a fixed representation before the final classification or regression
calculation. A classification head can add additional matrix multiplications with activation
functions before the softmax. For example, in BERT (Devlin et al., 2019), the pooler can be
given by the equation tanh(W(x)), where X is the input vector, and W € R™" is a square
matrix with the same rank as the dimension of x. Multiple matrices or different activation
functions can be used depending on the task requirements. It is beyond the scope of this
paper, but more technical details on these components are given in works such as Devlin et
al. (2019) and He et al. (2021).

For the purpose of interpreting the model outputs, one has to isolate and analyze the
internal representations of the model. For the method which we applied in this study —
DecompX, the token decomposition in the Multi-Attention Head was performed according to
the following equations (Modarressi et al., 2023):

Zf = ZE=1 YHYN alh xﬁ:k Wﬁtt + wiban (1)

In Equation 1, the subscripts H, N refer to the number of heads and the input tokens,
respectively. Therefore af}j are the attgntion value of i,j token pair (Note that Attention
compares pairs of each token in (w) and ht" head. xﬁ:k denotes the attribution
vector for the k" input to the layer €. For computing the attributions of k" token, DecompX
ensures that tokens are not mixed so that their individual contribution at each layer can be

determined. Modarressi et al. (2023) describes for the theoretical details of the method.

Z,

Token importance and visualization

As mentioned earlier, we used the aggregate importance of each token from DecompX over
all layers of DeBERTa-V3-XSmall. For visualizing the token importances, we simply adapted the
script given by Modarressi et al. (2023) in their code! for DeBERTa, as their code was written
only for BERT and RoBERTa (Liu et al., 2019). While the token importance values in Modarressi
et al. (2023) are given by the components of the [CLS] vector, we took a slightly different
approach. Instead of using a pooler, we took the outputs X, X € R™"*¢ from the final hidden
layer. After summing them along the final (embedding) dimension d, these are symmetric
matrices and represent the final token-token associations. The token importance, therefore,
can be computed from their diagonal, from which we can subtract the mean and then visualizd
them according to Modarressi et al. (2023). The steps can be described as follows:

1 https://github.com/mohsenfayyaz/DecompX
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1 Y= %Zk X jk
From the resulting tensor X € R™™*4 from the last hidden layer, sum along the last
dimension R™™%4 — R™ " by taking its average.
2. Z =diag(Y)
From the matrix Y from the previous step, get the diagonal elements Y;;, Y € R™"
3. visualize(Z —Z)
Visualize after subtracting the mean from the vector Z.

For visualizing, we first excluded the [CLS ] and [ SEP] tokens, as they denoted sentence
boundaries and not the content itself. Following the approach of Modarressi et al. (2023), we
normalized the entire importance vector by its maximum component and an additional
constant factor before visualization. The resulting token importance values, which can be
positive or negative, are represented by colors: green color indicates a positive contribution,
and red color signifies a negative contribution. Higher values denote a greater impact on Al
predictions. Specifically, larger positive values mean that altering the corresponding token
would significantly change the prediction, while smaller negative values suggest a lesser
impact. However, of note is that this analysis does not specify how altering tokens could
increase or decrease the predicted score, which is a key limitation discussed in Section 5.

Interpreting human-Al mean difference

We aimed to interpret group-level results also through the lens of token importance. Given
that importance values are specific to each token and can vary even when a token appears
multiple times within the same essay, we addressed this by selecting the top ten highest
positive tokens from all essays. These tokens have the most significant impact on Al
predictions. By normalizing their frequency by the number of essays in each population group,
we gain insights into the differences in mean scores between human and Al predictions for
each group.

4. Results

In this section, we present the analysis results for the three research questions. In summary,
we found that, for RQ1, using surface-level linguistic features, Al-generated essays closely
resembled student essays in structure and syntax but differed slightly in length and
grammatical accuracy. Al essays used more sophisticated vocabulary and exhibited more
errors in mechanics compared to student essays. For RQ2, the analysis revealed that, while
augmented scoring models generally aligned well with human scores, model performance
varied across prompts and training samples; scoring models trained using a mix of student and
GPT-generated essays performed comparably to those trained on student essays alone; and
the size of training samples had a minimal effect once exceeding about 1,000 samples. In RQ3,
we found that scoring model performance across racial/ethnic subgroups showed initial biases
when the models were trained on student essays. Augmenting models appeared to mitigate
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those biases, especially benefiting smaller subgroups such as Asian/Pacific Islanders. The
augmentation appeared to have improved the consistency of Al scoring with human ratings,
underscoring the importance of diverse training data. Finally, the analysis of model
explainability highlighted challenges in interpreting Al scoring models in general and across
subgroups, due to the token-level focus of models including the approach used in this work.
By aggregating the important tokens, differences in Al scores were linked to the use of certain
vocabulary, revealing potential reasons for scoring biases. Augmentation helped mitigate
these biases, again indicating potential benefits of more diverse training data. Next, we
provide details of the results for each research question.

4.1  Results for research question 1

To address RQ1, we evaluated the similarities between Al-generated and student essays.
The comparisons on the distributions of the e-rater features are given in Figure 3. This analysis
was carried out on one third of the student essays, independent of the data used to feed the
GPT-4 and GPT-40 generators for essay generation. The results suggest that the lengths of the
Al essays (TextLen) tend to be somewhat shorter than student essays. The discourse structure
of Al essays (NUnit and UnitLength) largely resembles that of student essays. Al essays and
student essays are highly similar in terms of the diversity of syntactic structures (Syntax). GPT-
4 generated essays appear to have slightly more grammatical, mechanical, word usage,
collocation, and preposition errors compared to student essays and GPT-40 generated essays.
On average, Al essays tended to use longer and more sophisticated vocabulary compared to
student essays. It is worth noting that, even though Al essays demonstrated some differences
in linguistic and text features from student essays, the scoring models (i.e., fine-tuned
DeBERTa-V3-XSmall models) only used the raw texts for scoring.
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4.2  Results for research question 2

In RQ2, we are concerned with how augmented scoring models perform compared to scoring
models trained using only student essays. Tables 5 and 6 show the QWK and correlation
coefficients between human and Al scores, respectively, for each of the seven prompts.
Figure 4 includes the SMD between human and Al scores. All analyses of model performance
were conducted on held-out test data sets, which remained constant within each prompt to
facilitate comparisons between different scoring models. The results presented in Tables 5, 6,
and Figure 4 pertain only to student essays. The model performance on Al essays is presented
and discussed in Section 4.4.

We found that with the exception of augmented models for prompt “P7-A Cowboy,” all
scoring models achieved relatively high QWK and correlation coefficients (greater than .75)
between human and Al scores on the held-out test data. We suspect that the relatively lower
QWK for prompt 7 was due to the higher difficulty of this writing task (lower mean human
rating), as shown in Table 2, and narrower range of its response quality (smaller standard
deviation). Augmenting the training samples did not consistently improve or degrade model
performance across prompts in terms of QWK and correlation. In other words, the results
show that augmented models generally perform comparably to models trained on student
essays only.

We found a small but clear increase in human-Al QWK and correlations as sample size
increased, from the 20% downsampled base model to the 100% base model across prompts.
The size of the training sample demonstrated an overall small impact on model performance,
especially once the sample size exceeded approximately 1,000 (i.e., the 60% category).
Regarding the SMD between human and Al scores, the statistic generally fell between -.15 and
.15, suggesting no significant Al scoring bias. Interestingly, the largest SMD values, greater
than 0.2 or 0.3 in absolute magnitude, tended to be associated with base models trained solely
on student essays. Again, these results indicate that, given the same training sample size,
when a scoring model is primarily trained using GPT-generated essays, the model still grades
student essays effectively and shows comparable performance to models trained using only
student essays. In comparing the two generators, augmented models using GPT-4 generated
essays generally slightly outperformed models augmented by GPT-40 generated essays.
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Table 5. Human-Al quadratic weighted kappas on student essays
Human-Essay Downsampled Percent

Prompt Model 20% 40% 60% 80% 100%

1-Facial Action Base 0.8646 0.8530 0.8834 0.8662 0.8875
Augmented (GPT-4) 0.8478 0.8623 0.8800 0.8850 0.8912

Augmented (GPT-40) | 0.8384 0.8610 0.8692 0.8734 0.8755

2-Electoral College | Base Model 0.7710 0.8037 0.7964 0.8110 0.7946
Augmented (GPT-4) 0.7570 0.8076 0.8117 0.8134 0.8044

Augmented (GPT-40) | 0.7436 0.7836 0.7835 0.8070 0.8197

3-Car-free Cities Base 0.7085 0.7866 0.8212 0.8034 0.8248
Augmented (GPT-4) 0.7610 0.7589 0.8112 0.7870 0.8069

Augmented (GPT-40) | 0.7423 0.7839 0.8065 0.7907 0.8022

4-Driverless Car Base 0.7405 0.7562 0.7834 0.7735 0.7729
Augmented (GPT-4) 0.7584 0.7559 0.7688 0.7931 0.7897

Augmented (GPT-40) | 0.7291 0.7579 0.7480 0.7486 0.7687

5-Exploring Venus Base 0.8076 0.8355 0.8588 0.8634 0.8567
Augmented (GPT-4) 0.8083 0.8511 0.8379 0.8497 0.8704

Augmented (GPT-40) | 0.8032 0.8276 0.8057 0.8586 0.8519

6-Face on Mars Base 0.7759 0.8081 0.8141 0.8081 0.8199
Augmented (GPT-4) 0.7122 0.7988 0.7879 0.7816 0.8098

Augmented (GPT-40) | 0.7566 0.7851 0.7969 0.8015 0.7918

7-A Cowboy Base 0.7173 0.7153 0.7419 0.7731 0.7650
Augmented (GPT-4) 0.6694 0.7304 0.6846 0.7512 0.7814

Augmented (GPT-40) | 0.6425 0.7297 0.6179 0.7455 0.6097

Note. Values lower than 0.7 are in bold.
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Table 6. Human-Al correlation coefficients on student essays

Human-Essay Downsampled Percent

Prompt Model 20% 40% 60% 80% 100%
1-Facial Action Base 0.8714 0.8660 0.8884 0.8973 0.8970
Augmented (GPT-4) 0.8553 0.8779 0.8808 0.8966 0.8917
Augmented (GPT-40) | 0.8462 0.8668 0.8788 0.8777 0.8803
2-Electoral College | Base 0.7839 0.8053 0.8180 0.8196 0.8117
Augmented (GPT-4) 0.7606 0.8206 0.8180 0.8180 0.8269
Augmented (GPT-40) | 0.7548 0.8009 0.8027 0.8148 0.8246
3-Car-free Cities Base 0.7962 0.8243 0.8452 0.8357 0.8333
Augmented (GPT-4) 0.7896 0.8085 0.8310 0.8226 0.8316
Augmented (GPT-40) | 0.7745 0.8045 0.8330 0.8176 0.8205
4-Driverless car Base 0.7691 0.7798 0.7878 0.7799  0.7897
Augmented (GPT-4) 0.7593 0.7784 0.7853 0.7983  0.7965
Augmented (GPT-40) | 0.7410 0.7616 0.7538 0.7721 0.7788
5-Exploring Venus Base 0.8269 0.8499 0.8609 0.8668 0.8623
Augmented (GPT-4) 0.8129 0.8545 0.8463 0.8595 0.8706
Augmented (GPT-40) | 0.8093 0.8317 0.8333 0.8599 0.8525
6-Face on Mars Base 0.8061 0.8100 0.8373 0.8285 0.8430
Augmented (GPT-4) 0.7433 0.8110 0.8065 0.8039 0.8269
Augmented (GPT-40) | 0.7749 0.7935 0.8114 0.8139 0.8132
7-A Cowboy Base 0.7610 0.7695 0.7876 0.7908 0.7922
Augmented (GPT-4) 0.7086 0.7584 0.7511 0.7850 0.7999
Augmented (GPT-40) | 0.7028 0.7625 0.7214 0.7757 0.7356
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Figure 4: Standardized mean differences between human and Al scores
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4.3  Results for research question 3

To address RQ3, we examined the scoring model performance by race/ethnicity. Figures 5
and 6 present the mean differences in standardized scores between human score and Al
prediction on student essays for each racial/ethnic group. Figures 7 and 8 show the human-Al
QWK by subgroup. The base model tended to strongly favor the Asian/Pacific Islander group
(see the red triangles), assigning, on average, higher Al scores compared to rater scores.
Augmenting the model training samples notably reduced these large mean score differences
for the Asian/Pacific Islander group across all seven prompts (see the red squares). Similarly,
when the base models slightly favored the Black/African American group in “P3-Car-free
Cities” (see the green triangles), the Hispanic/Latino group in “P6-Face on Mars” (see the
orange triangles), and the White group in “P4-Driverless Cars” (see the blue triangles), the
corresponding augmented models all led to smaller mean differences between human and Al
scores. Regarding human-Al QWKs, these results show that augmenting the training sample
can improve the QWK at the subgroup level (e.g., Black/African American group in “P3-Car-
free Cities,” Hispanic/Latino group in “P2-Electoral College,” Asian/Pacific Islander group in
“P4-Driverless Cars”). Overall, augmentation appears to be particularly beneficial for small
population subgroups such as the Asian/Pacific Islander group.
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(b) P2-Electoral College
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Figure 5: MDDS by subgroup (Al generator for augmentation: GPT-4)

Note. Reference lines are at +/- 0.10.
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Figure 7: QWK by subgroup (Al generator for augmentation: GPT-4)

Note. Reference lines are at +/- 0.7.
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Figure 8: QWK by subgroup (Al generator for augmentation: GPT-4 o)
Note. Reference lines are at +/- 0.7.

4.4 Scoring model performance on Al essays

As a complementary analysis, we examined the performance of base and augmented scoring
models on Al-generated essays. About 32 to 49 Al-generated essays per prompt were held out
for this analysis and were not used for training or augmenting the scoring models. This
examination proved valuable as it not only highlighted material differences between Al and
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student essays that were not revealed in the analysis for RQ1, but also revealed discrepancies
between content generators. We focused on one metric, QWK. Because those were Al-
generated essays, they came with a predetermined score level for which we asked GPT to
generate the content. Those essays were then graded by scoring models trained on either
student essays alone or a mix of student and Al-generated essays, and received a prediction.
The QWKs were calculated between the predetermined score level and the model prediction.

Table 7 shows that, for GPT-4 generated essays, none of the base models with varying
proportions of student essays in the training process could accurately predict the
predetermined score level, as demonstrated by the low QWK values. In comparison, as seen
in Table 5, the base model performed well on student essays in the test set. This contrast
suggests that GPT-4 generated essays are likely quite different from student essays, although
necessitating systematic qualitative analysis to confirm. The comparable results for GPT-40
generated essays, presented in Table 8, showed relatively high QWK for the base model on
four of seven prompts. This result indicates that GPT-40 essays may be similar to student
essays on those four prompts, where similarity is inferred by the large language model.
However, low QWKs on the other three prompts indicate discrepancies between GPT-40
essays and student essays. Finally, the extremely high QWKs achieved by the augmented
scoring models, both GPT-4 and GPT-4o0, in Tables 7 and 8 possibly suggest that the quality of
Al essays is most likely internally consistent. However, this does not necessarily mean that an
Al essay with a score level of 2, for example, would receive a 2 if graded by an expert human
rater. In the future, it will be beneficial to recruit writing experts to grade a subset of Al essays
to verify their quality against the grading rubric.
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Table 7. QWK between predetermined score level and predictions on GPT-4 generated essays

Human-Essay Downsampled Percent

Prompt Model 20% 40% 60% 80% 100%
1-Facial Action Base 0.5933 0.6111 0.6448 0.5398 0.4989
Augmented (GPT-4) | 0.9437 0.9324 0.9498 0.9374 0.9505
2-Electoral College | Base 0.4778 0.5628 0.6456 0.5341 0.6928
Augmented (GPT-4) | 0.8965 0.9393 0.8994 0.9050 0.9119
3-Car-free Cities Base 0.4165 0.5847 0.5567 0.5306 0.5869
Augmented (GPT-4) | 0.9570 0.9484 0.9616 0.9531 0.9488
4-Driverless car Base 0.4547 0.5186 0.5903 0.5027 0.5900
Augmented (GPT-4) | 0.9371 0.9289 0.9370 0.9369 0.9408
5-Exploring Venus Base 0.5475 0.6037 0.6204 0.5743 0.5365
Augmented (GPT-4) | 0.9335 0.9274 0.9256 0.9295 0.9329
6-Face on Mars Base 0.4799 0.5569 0.5235 0.6983 0.5931
Augmented (GPT-4) | 0.9422 0.9382 0.9415 0.9425 0.9483
7-A Cowboy Base 0.1922 0.2554 0.4130 0.2364 0.2889
Augmented (GPT-4) | 0.8745 0.8507 0.9043 0.8860 0.8674

Note. Values lower than 0.7 are in bold.
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Table 8. QWK between predetermined score level and predictions on GPT-40 generated essays

Human-Essay Downsampled Percent

Prompt Model 20% 40% 60% 80% 100%

1-Facial Action Base 0.8584 0.8685 0.8496 0.8137 0.8010

Augmented (GPT-40) 0.9747 09686 0.9714 09706  0.9649

2-Electoral College Base 0.7598 0.7519 0.7610 0.7846  0.8120

Augmented (GPT-40) 0.9648 0.9606 0.9640 0.9657 0.9621

3-Car-free Cities Base 0.5834 0.6612 0.6684 0.6243  0.6323

Augmented (GPT-40) 0.9255 09330 0.9253 0.9273 0.9122

4-Driverless car Base 0.7367 0.7275 0.8088 0.8228 0.8223

Augmented (GPT-40) 0.9323 09355 0.9291 0.9384  0.9452

5-Exploring Venus Base 0.5205 0.6831 0.5950 0.6334 0.5779

Augmented (GPT-40) 0.9505 0.9579 0.9593 0.9609  0.9568

6-Face on Mars Base 0.8150 0.8388 0.8173 0.8736 0.8206

Augmented (GPT-40) 09716 0.9640 0.9573 0.9647 0.9667

7-A Cowboy Base 0.5163 0.5030 0.7040 0.6138  0.6501

Augmented (GPT-40) 0.9623 0.9646  0.9659 0.9659  0.9565

Note. Values lower than 0.7 are in bold.

4.5 Model outputs and subgroup difference interpretations

Figure 9, presented as a heatmap, illustrates an example where each token in a student essay
is highlighted based on its importance value. This essay, written in response to the prompt
“P4 - Driverless Car,” received a human score of 1. Upon reviewing the essay, we concur with
the human rater’s evaluation that the writing lacks coherent and logical arguments and fails
to provide convincing evidence. However, this response received an Al score of 3 from the
100% Base model. While it is challenging to determine precisely why the Al score is two points
higher than the human score, the heatmap of token importance suggests that key vocabulary
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used in the prompt text, particularly the content words “driverless” and “car” (highlighted in
green), are more highly valued by the Al scoring model.
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Figure 9: Token importance visualization

Note: This is a student essay written to prompt “P4-Driverless Cars". It received a human score of 1 on the
6-point rubric. Green color means positive impact and red color means negative impact on the prediction.

The more positive the token importance value is, the greater impact the token has on the prediction.

Interpreting Al scoring performance across subgroups is a challenging task. All interpreter
models, including the DecompX method used in this study, to our best knowledge, only
provide token-level importance. We employed an approach to aggregate token importance at
the group level. For each response, we selected the top 10 tokens tagged with the highest
importance values. For each racial/ethnic group, we then calculated the normalized frequency
of these tokens by the number of responses. Using prompt “P4-Driverless Car” as an example,
Table 9 lists the high-importance tokens with a frequency greater than 0.1, indicating that
these tokens were used in at least 10% of the responses within that group. Tokens appearing
inless than 10% of the responses were likely too rare to be considered. Although this approach
is not perfect and cannot produce definitive explanations, it offers some insights into why Al
may have over-scored or under-scored certain populations. 2

2 Token importance results for the other prompts are given in Appendix D.
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Table 9. High importance tokens by subgroup (ordered by frequency from high to low)

P4-Driverless Cars 100% Base Model

Asian/Pacific Islander , | to | .| and | the | driverless | - | cars | can | are | when | car | cause | so

| " | who | both |people | will | drive | a

Black/African .land|,|to]|car|a|cars|the|can | drive ||| not | there | are | would
American

Hispanic/Latino cars|and |, |.|to]car|a|the|can | drive | technology | are

White ,lto]and|cars|.|car|a|the|could|can | driverless | in | not | are

P4-Driverless Cars 100% Augmented Model (GPT-4)

Asian/Pacific Islander  cars |the | can | and [to|.|" | car |, | will | driving | is | should | people |
get | are | someone | would

Black/African cars|.|the|to|a|car|can|and |, |are]is|in | would | should |

American could | get | that

Hispanic cars|to|.|and |, |car|a| the]|can | could | have | will | is | are | would
|
do | we

White cars|to|.|and | car | the |, | could | can | a | will | less | in | driverless

P4-Driverless Cars 100% Augmented Model (GPT-40)

Asian/Pacific Islander ~ the | to | .| and |, | technology | will | driverless | " | are | is | The | when |

with | can | pay |these | What | car | If | driving | not | people | how

Black/African .| and | the | to | can | are | is| cars | of | , | have | driverless | car | do | in
American | that | a | people | they
Hispanic .| and | to | the |, | technology | is | cars | could | these | are | can | if |
that |
of | with
White .| and | to |, | the | cars | driverless | could | can | are | car | is | people |

they | a | do |technology | ? | in

For prompt “P4-Driverless Car,” Figures 5 and 6 show that, for the 100% Base model, the mean
Al score was notably higher than the mean human score in the Asian/Pacific Islander student
group. The MDSS value for the 100% Base model was greater than 0.2, suggesting bias favoring
the Asian/Pacific Islander group (see the red triangles in the figures). When the Base model
was augmented by GPT-4 or GPT-4o generated essays, the MDSS values decreased to around
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0.1, indicating that the bias was mitigated (see the red squares in the figures). Based on
Table 9, our observation is that the tokens given the most importance by the 100% Base model
in the Asian/Pacific Islander group include logical connection words such as “cause” and “so.”
The content word “driverless”, also a keyword mentioned in the prompt text appeared as a
highly impactful and important token for both the Asian/Pacific Islander and White groups,
where both groups received a higher mean Al score compared to the human mean score in
the 100% Base model. In the Augmented models, with either GPT-4 or GPT-40, we observed
that the important token lists were similar across racial/ethnic groups; the lists contain very
few, if any, content-related words or words used to make logical transitions. The impact of
the prompt word “driverless” also appeared to be less differential between the subgroups.
Similar results are found in other prompts where Asian/Pacific Islander students appeared to
use content words, such as those showing in the writing instructions, more than the other
subgroups of students. Though, we should note that this finding can be due to limitations of
token-level importance, which is discussed in the next section.

5. Discussion

In this study, we demonstrate the feasibility and potential benefits of using LLMs (i.e., GPT-4
and GPT-40) for augmenting data for the purpose of Al scoring of essay items. We have
explored three research questions: the similarities between Al-generated and student essays,
the prediction accuracy of fine-tuned LLM-based prompt-specific scoring models, and the
fairness of these scores across different demographic groups. The augmented data, that is,
the GPT-generated essays, showed surface-level alignments with student essays, especially
regarding syntactic structure and discourse. However, Al-generated essays were likely to differ
significantly from student essays in terms of content and writing style in subtle ways that
surface-level linguistic features cannot detect. These differences will require systematic
human review for confirmation. Overall, the similarities between Al and student essays
indicate that Al-generated content could be integrated into training of Al scoring models,
potentially maintaining or enhancing the scoring model’s ability to predict human judgment
on essay quality. Empirical results showed that the models trained with a mix of student and
Al essays performed comparably to those models trained solely on student essays, although
performance varied across different prompts as well as the size and proportion of student
essays in the scoring model training samples. The size of training samples, whether using
student essays alone or a mix of student and Al essays, had minimal impact beyond 1,000
samples. This base model result aligned with the previous research, which reported a sample
size of 1,000 being generally efficient (Zhang et al., 2024). Our results further revealed a noted
improvement in reducing human-Al score discrepancies for small subgroups of population
using augmented samples in training scoring models. Specifically, initial biases were observed
in scoring model performance for small racial/ethnic subgroups when trained on student
essays. The inclusion of Al essays notably mitigated biases for underrepresented groups, such
as Asian/Pacific Islander and Black/African American students, thereby enhancing consistency
in scoring across diverse writer populations. Lastly, the analysis of model explainability
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revealed challenges in interpreting Al scoring models due to their token-level focus. The token
importance was derived from the contextual embeddings, after decomposing them. While
small changes in the input can lead to corresponding changes in token importance for a single
response, analyzing aggregated importance across responses can still yield meaningful
insights into the model’s predictions. This examination of important tokens linked differences
in Al scores to specific vocabulary use, revealing potential causes to scoring biases.
Augmentation with Al-generated essays helped mitigate these biases, further suggesting the
benefits of diverse training data.

While we investigated several critical questions in the use of generative Al for writing
evaluation, this study has limitations. One limitation is that only one human rating is available.
Consequently, we could not conduct any true score evaluation on the scoring models. A
related limitation is that the reliance on quantitative metrics such as QWK and correlation
coefficients, while robust, may oversimplify the nuanced differences between human and Al
scores. This is particularly critical given the disparity in content and writing style that surface-
level linguistic features might have overlooked. A detailed qualitative analysis involving writing
and content experts would be essential to verify the fidelity of Al-generated essays more
comprehensively.

Additionally, the results may not be generalizable to other LLM and generative Al
capabilities. The scope of this study was limited to comparing models using GPT-4 and GPT-40
as generative tools. Future research is advised to replicate the study by including and exploring
other generative models and architectures. Furthermore, while we have used the same
instruction prompts for both GPT-4 and GPT-40, these may not work for other classes of
models, such as Llama, Gemini, or Deepseek. The variation in output and the effect it may
have on the scoring model will be difficult to predict, and the prompts may need to be
modified for new models. Different LLMs also have different instruction schemas, which
induces further complications. For future research, different LLMs may be combined to
generate more diverse outputs while augmenting the scoring model.

Methods such as DecompX provided insights into how models interpret and weigh
content, which was useful, but it does not provide much information beyond token
comprehension. Such a focus on token-level explanations for model outputs highlights the
inherent challenges in achieving transparent model interpretability. For instance, it does not
explain why certain tokens are more important to the model prediction and which possible
replacements may increase or decrease the score. This inherent methodological weakness
restricts our ability to thoroughly understand and alleviate biases in Al scoring. The current
methods also do not provide semantic information beyond the token level. Language
semantics are distributed across individual tokens, which cannot be easily identified from a
token-level analysis. Another issue with methods like DecompX is that since it tries to identify
token importance across the input text, it can give very weak scores for long text inputs such
as essays. Aggregating the token importance results on a group level is a related challenge.
Future research is encouraged to explore methods that can identify relevant phrases and
sentences, along with studying methods that may provide specific token suggestions that
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increase or decrease the score of the essay. We also encourage future research to explore
methods that leverage linguistic features such as those extracted from e-rater to explain LLM
outputs. For example, approaches such as the Best Interpretable Orthogonal Transformation
(BIOT, Bibal et al., 2021) may help reduce the high dimensional data from LLMs and
meaningfully map onto a much lower dimensional space. Future research may also consider
further combining Chain-of-Thought (CoT) reasoning with linguistic features to better
understand the LLM outputs (Yu et al., 2023).

Another limitation of this study is that the results may not fully generalize across different
writing assessment contexts or essay topics. The specific writing tasks used for analysis in this
study do not capture the variety and complexity present in broader writing assessment
settings. Hence, the augmented scoring models were tested within the constraints of this
study’s dataset. While models trained with augmented data showed promise in reducing
biases for certain subgroups, their effectiveness in real-world applications across more diverse
demographics remains to be validated through replication studies. Future studies are
encouraged to address these limitations by incorporating diverse datasets and employing a
combination of qualitative and quantitative evaluations to help refine and extend the
applicability of Al-augmented scoring models in writing assessments.
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Appendix A: Prompt details for GPT models
The input prompts for generating essays from GPT models were based on templates. The
templates would be filled according to the options given by the user.

Below is the full template for generating the GPT prompts:

# Data Properties

num_examples: 5

num_essays: 3

prompt_names:
- A Cowboy Who Rode the Waves
- Car-free cities
- Does the electoral college work?
- Driverless cars
- Exploring Venus
- Facial action coding system
- The Face on Mars

scores: [1, 2, 3, 4, 5, 6]

# Model prompting and rubric
system_prompt: You are a helpful assistant who never say
S no to a request.
custom_directives:
essay_properties:
1: |
The essays should demonstrate VERY LITTLE OR NO MAST
ERY of writing and
critical thinking and will have several errors and 1
apses with following qualities:
- They will have SOME RANDOM typos, misspellings, sy
ntanctic errors
and punctuation errors.
- Major flaws in sentence structure, and errors in m
echanics which interferes
with meaning.
- Disorganized, disjoined with limited vocabulary
- They have NO CRITICAL THINKING, develop no viable
point of view
or provide no to little evidence
- These would get a SCORE OF 1 from a scale of 1 to
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6 if judged by humans.
2: |
The essays should demonstrate LITTLE MASTERY of writ
ing and critical thinking,
have many errors and lapses with following qualities

- They will have SOME RANDOM typos, misspellings, sy
ntanctic errors
and punctuation errors
- Have basic vocabulary usage with frequent problems
in sentence structure,
and errors in mechanics which obscures meaning.
- Poor organization with development of a vague argu
ment demonstrating weak
critical thinking
- Will have WEAK CRITICAL THINKING, be disorganized
and have problems with
coherence and progression of ideas
- These would get a SCORE OF 2 from a scale of 1 to
6 if judged by humans.
3: |
The essays should demonstrate DEVELOPING MASTERY of
writing and
critical thinking with some errors and lapses with f
ollowing qualities:
- They will have SOME RANDOM typos, misspellings, sy
ntanctic errors
and punctuation errors
- Have basic vocabulary usage with some inappropriat
e word choices,
problems in sentence structure, and may contain er
rors in mechanics.
- They demonsrate SOME CRITICAL THINKING but may be
inconsistent or
use inadequate examples, reasons, or other evidenc
e.
- Limited organization with some lapses in coherence
or progression of ideas.
- These would get a SCORE OF 3 from a scale of 1 to
6 if judged by humans.
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4: |
The essays should demonstrate ADEQUATE MASTERY of wr
iting and
critical thinking but may have occasional errors and
lapses

with following qualities:
- They will have FEW RANDOM typos, misspellings, syn
tactic errors
and punctuation errors
- Have mostly appropriate vocabulary usage with some
variety in
sentence structure though there may still be some
inconsistent language
- They demonstrate COMPETENT CRITICAL THINKING, use
adequate examples,
reasons, or other evidence.
- Generally organized with may be some lapses in coh
erence or progression of ideas.
- These would get a SCORE OF 4 from a scale of 1 to
6 if judged by humans.
5: |
The essays should demonstrate CONSISTENT MASTERY of
writing
and critical thinking but may have very occasional m
inor errors
and lapses with following qualities:
- They will have EXTREMELY FEW RANDOM typos, misspel
lings,
syntactic errors and punctuation errors
- Have appropriate vocabulary usage with variety in
sentence structure
and consistent language
- They demonstrate STRONG CRITICAL THINKING, use ade
quate examples, reasons,
or other evidence.
- Well organized, focused with coherence and smooth
progression
- These would get a SCORE OF 5 from a scale of 1 to
6 if judged by humans.
6: |
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The essays should demonstrate EXCELLENT MASTERY of w
riting and
critical thinking and only occasionally may have ver
y minor errors
with following qualities:
- They will have RARE RANDOM typos, misspellings, sy
ntactic errors
and punctuation errors
- Have varied, accurate and apt vocabulary usage wit
h variety in
sentence structure and skillful language
- They demonstrate OUTSTANDING CRITICAL THINKING, is
insightful
with appropriate examples, reasons, or other evide
nce.
- Well organized, focused with coherence and smooth
progression
- These would get a MAXIMUM SCORE OF 6 from a scale
of 1 to 6 if judged by humans.

prompt_specific_prefix_template: >

Given are randomly sampled essays written by students
from grades 6 through

12, each having the title "{}" and which all received
a score {} on a scale of 1

to 6.

random_sample_prefix_template: >

Given are essays written by students from grades 6 thr
ough 12 with various

titles, sampled randomly from a set of essays which al
1 received a score of {}

on a scale of 1 to 6. The essays have titles:

for_prompt_prefix_template: >

The essays argue IN FAVOUR of the argument of the prom
pt, e.g. for a prompt "{}"

it should provide arguments SUPPORTING a theory that {
}.
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against_prompt_prefix_template: >

The essays should position themselves AGAINST the argu
ment of the prompt,

e.g. for a prompt "{}" it should provide arguments OPP
OSING a theory that {}.

prompt_directives_prefix:

mixed: You are to generate one essay for each prompt m
atching the style

and syntax of the essays.

single: You are to generate {} essays for the same pro
mpt "{}" matching

the style and syntax of the essays.

prompt_directives: |

Each essay should mimic the style of a schoolgoing chi
1d and should pass

as if written by a child up to grade 12.

The child is writing this to best of his/her ability k
nowing it'll be scored

so avoid informal usage like "z" instead of "s" or "u"
instead of "you".

You are also to make sure that the generated essays ar
e different

from the given essays.

The generated essays must also be of a similar length
to given essays.

The sections marked {} were filled with data and user options. The prompts are defined
in the section prompt_names in the config above. For each prompt we randomly sampled
5 essays and gave it to the model. That number is given by num_examples in the config.
The option used was prompt_specific_prefix_template. For each prompt, in
each turn, two essays were generated. One supporting the title argument and one against.
This was to balance the generated dataset as the students responses were also mixed in favour
and against. For  these for_prompt_prefix_template and
against_prompt_prefix_template were used.

For each prompt around 1000 essays were generated. 3 essays were generated per GPT-
40 function call and 1 essay for GPT-4 function call. We found that asking it to generate more
than that in turn degraded the essay quality for each model.
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Appendix B: Training parameters

The following training parameters were used for all training runs:

name: fine_tune
batch_size: 24

g

gpus: [0, 1, 2, 3]
evaluation_set: validation
set

freeze_layers: null
gradient_clipping: null
shold
layers_require_grad: null
which layers require grad
limited_decay_keys:

h should have limited

- bias
- LayerNorm.bias
- LayerNorm.weight
- norm
max_seq_length: 1536
hich it's truncated
mixup_params: null
no_dropout: false
num_workers: 16
kers
optimizer:
name: AdamW
params:

amsgrad: false

betas:

- 0.9

- 0.98

eps: 1.0e-06

lr: 1.0e-05

weight decay: 0.01
save_best key: val
ving the "best" model

# type of the training
# batch size for trainin

# GPUs used
# Name of the validation

# Which layers to freeze
# Gradient clipping thre

# If freeze layers, then
# layers with names whic

# 1 2 weight decay

# Max seq length after w
# Mixup related params
# Don't use dropout

# Number of parallel wor

# Optimizer params

# Which set to use for sa



save_frequency: 5
point
scheduler _step on: epoch
cheduler used
steps: null
instead of epochs
testing:
batch_size: 8
use_accelerate: false
use_amp: true
cision
use_cuda: true
use_peft: false
icient Fine Tuning)
additional_metrics:
rack including loss
- d_kappa
- c¢_kappa
loss_fn: MSELoss
name: scoring_regression_task

normalized: true
e scores
num_epochs: 20
hs

save_metrics:

r saving the "best" model”
- loss

- d_kappa

scheduler: null

ng Rate Scheduler

squeeze: true

t (task specific parameter)
tokenizer_path: null

type: regression

+*
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Frequency to save check
step for scheduler if s
Number of steps to use
Testing params

Use accelerate module
Use automatic mixed pre

Use cuda
Use PEFT (Parameter Eff

Additional metrics to t

Loss function to use
Task name
Whether to normalize th

Number of training epoc

Which metrics to use fo

Whether to use a Learni
Squeeze the final outpu

Use given tokenizer
Task type
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Base and augmented scoring model training sample sizes by score

level for prompts 2to 7

Appendix C
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P6-Face on Mars
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Appendix D: Toke importance
Prompt 1: High Importance Tokens by Subgroup (Ordered by Frequency from High to Low)
P1-Facial Action 100% Base Model

Asian/Pacific students |’technology | . | help | a | and | to | that | classroom | the |
Islander classrooms | can | "

Black/African .| students |, | and | to | computer | a | can | technology | the | help | in |
American that | or | "

Hispanic/Latino .|, | can | the | and | students | to | technology | a | " | could | help | that

| " | but | classroom | in | or | for

White .| and | students | to | , | the | a | classroom | could | help | technology |

that | can | " | or

P1-Facial Action 100% Augmented Model (GPT-4)

Asian/Pacific .| can | the | and |, | technology | people | classroom | students | or | " |

Islander are | fearful | because | in | of | they

Black/African .| the | can | and | computer |, | to | that | a | students | technology |

American they | s | or | could

Hispanic .| the | can | and |, | they | to | students | could | are | in | that | people |
have

White .| the | and | can |, | technology | classroom | could | to | they | students
|a| of

P1-Facial Action 100% Augmented Model (GPT-40)

Asian/Pacific to | .| students | and |, | the | a | technology | when | for | can | they | is

Islander | " | help | teachers

Black/African to|,|.|and]|the]|a|can | computer | classroom

American

Hispanic ,lto].]aland]| the | can | students | technology | classroom | could | or
| when

White to|,|the|.]|and]| a| students | can | classroom | help




551 | JOURNAL OF WRITING RESEARCH

Prompt 2: High Importance Tokens by Subgroup (Ordered by Frequency from High to Low)

P2-Electoral College 100% Base Model

Asian/Pacific ,|.lare|to|for|we]|can]|s|be]|"|"|a]|didn]|in]|as]|voters |
Islander state | is | unfair

Black/African ,lalthe|for|.|in|by|and]|to|vote]|be|"| not| state

American

Hispanic/Latino ,lthe]al]in]|.|for|and|by]|to]|"|be|vote| have|s | not|are]is
White ,lalin|the]|.|for|vote|by|and]|to]| have|" | be|are

P2-Electoral College 100% Augmented Model (GPT-4)

Asian/Pacific in |, | people | candidate | that | . | ’ | electors | system | " | will | as |
Islander choosing | and | to
wrong | the | should |, | The | actually | are | party | votes | | | vote | not
Black/African the |in| .|, | and | vote | to | for | electors | voters | a | popular |
American electoral | people | candidate | of | college
Hispanic the | . | vote |, | in | for | and | candidate | popular | electors | people | a
| to | - | of | votes | Electoral | elect
White the | vote |, | in | . | and | for | popular | people | electors | to | college |

system | College | votes

P2-Electoral College 100% Augmented Model (GPT-40)

Asian/Pacific the | they | . | The | is | we | Electoral | electors | to | express | may |

Islander about |, | a | change

pick | college | for | say | system | candidate | everyone

Black/African the [ in|.|for|to]|, | and | electors | a | vote | people | electoral | be |
American The
Hispanic the [in|.|,|for|a] vote | to| who | people | electors | The | candidate

|”] by |and| be



White
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the |, |in]|.|a]for| vote | to | people | be | and | electors | electoral

Prompt 3: High Importance Tokens by Subgroup (Ordered by Frequency from High to Low)

P3-Car-free Cities 100% Base Model

Asian/Pacific Islander

Black/African

American

Hispanic/Latino

White

to|.|cars|by|the|and|a]|do|that],|in | people

.|to]the|al|,|in|and]|.]|car]|-| people | cars | of

.|to]in]|the|,|a]cars|and| people | car

.|to]the|in|,]|a| people|cars|and] -

P3-Car-free Cities 100% Augmented Model (GPT-4)

Asian/Pacific Islander

Black/African

American

Hispanic

White

to|.|a]can]|of |, |is|are| people | car

.|lal],|to]cars|the|and|can|in | In | people

.|to]alin],|cars|and| people | car

.|to]al,]|in]| cars|the | people | and | of

P3-Car-free Cities 100% Augmented Model (GPT-40)

Asian/Pacific Islander

Black/African

American

Hispanic

White

to|.]|a]cars|the|and | was | people | is
.Jtolaland|in|the]|-]|can]|,|for|cars|is
to|.|land|a]in|-|the]|,|can | for|car
to|.|aland]|-|the]|in]|, | for | cars | The | transportation | can |
people

Prompt 5: High Importance Tokens by Subgroup (Ordered by Frequency from High to Low)

P5-Exploring Venus 100% Base Model
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Asian/Pacific Islander to | and | Venus |, | present | can | the | has | surface | in | is | planet |

not | that
Black/African to|a|and| Venus |the]|.|in]|,|is| of| has | have | could | venus
American
Hispanic/Latino to|and | Venus | the|.|a |, |is| have | could | in|s | planet
White to|and|the|.]|,| Venus|a]|could]|in]|has]|"|is | have

P5-Exploring Venus 100% Augmented Model (GPT-4)

Asian/Pacific Islander ,|.]to|the|and | of | The|a|" | author | it|is | like | can | s | have
| in

Black/African .|to],|and|the|a|in|Venus|"|is| have | be | of | that | The

American

Hispanic .|to]and|a|,|the|author | Venus | have | it |" | of | The | in

White .| to],|the | author |a|and|that|"|it]in|is | this

P5-Exploring Venus 100% Augmented Model (GPT-40)

Asian/Pacific Islander .|l and | to | the | of | The | in |, | Venus | s | know | not | very
Black/African and | to | the|.|of |in| Venus | a | The | that |is |, | venus
American

Hispanic and | the [ to | of | . | Venus | The | In | is | have | in | covered
White and | to| .| of | the |in| Venus |, | be | a | author | with | that

Prompt 6: High Importance Tokens by Subgroup (Ordered by Frequency from High to Low)

P6-Face on Mars 100% Base Model

Asian/Pacific ,|.|Mars|to]a]|and|"|the | created | face | that | s | they | can | of
Islander | there | was | like | in | evidence | [SEP]
Black/African .|to]the|aland]|,|The|was|"|Mars|.|by]|t]|is|land|’|s

American
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Hispanic/Latino .|, the]to|a]and]|that|" | Mars | there | aliens | The | was | people
| in | not
White to|the|.|a]and]|,|" | Mars|was|-|there|is|in| created|.| not

P6-Face on Mars 100% Augmented Model (GPT-4)

Asian/Pacific face | .|, |a | The | the | by | is | that | there | in | NASA | spacecraft |
Islander aliens | not | created | to | mesa | and

Black/African .|the|.],|to]and]|a]| Mars | face | by | there | aliens | is | can | The |
American was | on|" | not

Hispanic .|, land|to]|the|" | not| Mars | a|land | form | that | was | there | it

| on | of | face | aliens

White .|, to] Mars|the|a|and|" | face | not | was | is | aliens | that |

there | this

P6-Face on Mars 100% Augmented Model (GPT-40)

Asian/Pacific .l a],|Mars | there | form | in |is | and | the | was | aliens | to | which |

Islander Cy | face | that

Black/African .| a|the|aliens|,|to|there|.| Mars | and | face |’ | that | this | it |

American because | but

Hispanic .],|to]a|the| Mars|and | there | it| aliens|" | was | ? | but | that |
could | just

White al.|to]|the], | Mars | aliens | there | and | that | was | it | but | " | this

| is | face | in




	Training Writing Skills: A Cognitive Developmental Perspective
	Training Writing Skills: A Cognitive Developmental Perspective
	1. Background
	2. Research problem
	3. Methods
	3.1 Data set
	3.2  Sample partitions
	3.3 Generating synthetic essays using GPT
	3.4 Linguistic feature extraction
	3.5 Base and augmented scoring model training
	3.6 Model evaluation on held-out test data sets
	3.7 Interpreting the model outputs
	Token importance and visualization
	Interpreting human-AI mean difference


	4. Results
	4.1 Results for research question 1
	4.2 Results for research question 2
	4.3 Results for research question 3
	4.4 Scoring model performance on AI essays
	4.5 Model outputs and subgroup difference interpretations

	5. Discussion
	Acknowledgment
	References
	Appendix A: Prompt details for GPT models
	Appendix B: Training parameters
	Appendix C: Base and augmented scoring model training sample sizes by score level for prompts 2 to 7
	Appendix D: Toke importance



