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1. Introduction

Many fields related to psychology, education, and linguistics accept that writing
plays a prominent role in both academic achievement and professional success. In
the 1970s, researchers in both scholarly and college writing began to consider
written productions as an essential part of the learning process (Britton, 1980;
Britton, Burgess, Martin, McLeod, & Rosen, 1975; Emig, 1977). These studies began
with the Bullock report (Bullock, 1975) in Great Britain and were regarded as “a
movement”. This movement was first collectively referred to as “language across
the curriculum” and later as “writing across the curriculum” (WAC) (Britton et al.,
1975). The WAC movement expanded to the U.S and Canada (Thaiss & Porter,
2010), and later to Latin America (Navarro et al., 2016). As we detail below, all these
works gave rise to more systematic inquiries about the effects of written
productions on learning, suggesting that writing entails complex cognitive
operations oriented by social and discursive goals (Bangert-Drowns, Hurley, &
Wilkinson, 2004; Bazerman, 2018; Klein & Boscolo, 2016; Plane et al., 2017).

Since the 1980s, two perspectives about writing have been respectively studied
by comparable research programs: WAC and writing in the disciplines (WID)
(Bazerman et al., 2005; Carter, Ferzli, & Wiebe, 2007; Klein & Boscolo, 2016;
McLeod, Miraglia, Soven, & Thaiss, 2001). Both the WAC and the WID movements
have been largely influenced by cognitive (McCutchen, Teske, & Bankston, 2008)
and rhetorical studies (Bazerman, 2018; Miller, 1984; Russell, 2002). Furthermore,
both movements currently influence the curricula in disciplines such as
psychology (Nevid, Ambrose, & Pyun, 2017), biology (Mynlieff, Manogaran, St.
Maurice, & Eddinger, 2014), linguistics (Petrucci, 2002), history (Martinez, Mateos,
Martin, & Rijlaarsdam, 2015), neuroscience (Prichard, 2005), pedagogy (Mateos,
Martin, Villalon, & Luna, 2008), and second language acquisition (Al-Murtadha,
2013).

Writing helps students to both acquire disciplinary concepts (i.e., writing to
learn) and socialize disciplinary knowledge via discipline-specific genre (i.e.,
learning to write) (A. Young, 2006). However, research in writing to learn differs
from research in learning to write. Specifically, research in writing to learn focuses
on the cognitive processes that makes writing itself a learning activity (Klein &
Boscolo, 2016; McCutchen et al., 2008). Crucially, as a unique human characteristic,
writing has an epistemic property because it serves learning, self-reflection, and
knowledge acquisition (Brown, 1998). Interestingly, this property is closely related
to the notion of epistemic action, embraced by current Bayesian frameworks of
brain function such as predictive coding and active inference (Parr & Friston, 2017;
Pezzulo, Cartoni, Rigoli, Pio-Lopez, & Friston, 2016). An epistemic action allows us
to gain information, reduce uncertainty, and boost curiosity. Therefore, because
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epistemic is at the heart of writing as an action, we could refer to writing to learn
as “epistemic writing”.

It is uncontested that writing enhances learning. However, the questions of
how it happens and how we could measure the learning effects from an
experimental perspective remain open (Ackerman, 1993; Arnold et al., 2017; Klein,
1999). Furthermore, in the educational field there is an increasing interest in
investigating how the knowledge about the neural basis of learning furthers the
educational goal of improving teaching strategies. Naturally, knowing the neural
mechanisms underlying the effects of writing on cognition would benefit the field
of “neuroscience and education”. However, this is an effort that demands
rigorous conceptual and methodological links between education, psychology,
and neuroscience (Bowers, 2016; Howard-Jones et al., 2016).

Based on the above and from the cognitive science perspective of levels of
analysis proposed by Marr (1982), we have three agendas in the current work:
substantiating conceptually and experimentally the thesis that the description of
the effects of writing on learning should consider long-term memory (LTM)
processes, advancing a formal model of the mechanism that underlies LTM
consolidation during writing, and providing an experimental link between the
field of writing to learn and the cognitive neurosciences. We start by describing
the facts that make our case that mental-chronometry measurements (i.e., reaction
time, RT) reveal the effects of writing on learning in terms of LTM consolidation.
We then report the strategy we performed to evaluate the hypothesis that writing
decreases the RT of LTM retrieval. We also explored, the specific component(s) of
memory retrieval affected by writing. We pursued this by using evidence
accumulation models of accuracy and RT. Finally, in the discussion section we
establish the relationship between the proposed experimental paradigm, the
current findings, and the cognitive neurosciences in terms of a link between the
cognitive processes that subjects would deploy when they learn during writing
activities and the underlying neural mechanisms.

2. Writing Facilitates LTM Consolidation

Klein (1999) proposes four hypotheses that could explain how writing affects
learning: shaping at the point of utterance, genre, backward search, and forward
search. The first hypothesis “shaping at the point of utterance” (Britton, 1980)
states that writers produce texts by “writing down the speech” in terms of free
associations of utterances. Specifically, both speakers and writers transform
implicit knowledge into explicit knowledge during syntactic and semantic
selection through propositional association. Put simply, this hypothesis assumes
that retrieving one piece of information activates related concepts — which from a
cognitive perspective is reminiscent to the spreading activation theory of semantic
processing (Collins & Loftus, 1975).
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The genre hypothesis states that writing enhances learning if writers follow an
a-priori structure (i.e., genre) defined by specific relations among constituent
parts. Consider a task in which students read a text and perform a writing activity.
Following, they are asked to recall (c.f., LTM retrieval) as much information as
possible about the source text (i.e., a free-association posttest). Essay-writing tasks
lead to better recall of the source-text’s content than non-essay writing activities
such as note taking and question-answering tasks (Langer & Applebee, 1987).

The backward search hypothesis (Bereiter & Scardamalia, 1987; Flower &
Hayes, 1980, 1981) says that rhetorical constraints drive writing. Writers set goals,
plan, write a content, and revise both goals and content. It is especially relevant
the dual-problem space model proposed by Bereiter and Scardamalia (1987). In
this model, writing leads to learning so long as the writer - in pursuing rhetorical
goals - elaborates on retrieved information from LTM. Specifically, this model
claims that learning, regarded as discovery, is a consequence of an interaction
between a content space (the writer's beliefs stored in LTM) and a rhetorical space
(the writer's representation of actual or intended text in terms of its rhetorical
function). In the dual-space model novice writers tend to just retrieve information
from the content space and "translate" it into text, i.e. knowledge-telling. More
expert writers search and evaluate potential content in terms of rhetorical goals
(represented in a rhetorical space), and knowledge transforming is a consequence
of retrieving different material from LTM. At present, most of the writing-to-learn
research invokes the dual-problem space model in motivating the writing-to-learn
activities that they use (Klein, Haug, & Arcon, 2017) and to propose new models
(Baaijen & Galbraith, 2018).

Finally, the forward search hypothesis says that writers revise texts iteratively
aiming to find and resolve contradictions via inferential processes (R. Young &
Sullivan, 1984). An exemplar case of this hypothesis is the proposal of discovery
through writing described by the dual-process model (DPM) (Galbraith, 2009;
Galbraith & Baaijen, 2015; Galbraith & Torrance, 1999). The DPM regards learning
through writing as the effect of two processes on ideas activated in episodic LTM
and ideas activated in semantic LTM. In one process, a dispositionally-guided
process, writers produce texts by activating semantic content in LTM. It involves
an initial synthesis within a distributed (i.e., connectionist) representation of
content activated by the writing task specifications, followed by feedback from
this initial output to the representation, leading to further syntheses. In another
process, a knowledge-transforming process, writers operate over ideas stored in
episodic memory. These ideas could be either those generated in the
dispositionally-guided process or ideas already stored in episodic memory (e.g.,
ideas recently read in a text).

The analysis proposed by Klein (1999) remarks that the four hypotheses about
how writing would affect learning relate to each other. For example, the forward
hypothesis seems to be the natural evolution of the “shaping at the point of
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utterance” hypothesis. Similarly, from our point of view, we regard the dual-space
model as a special case of the more general DPM.

We find the relationship between models of writing to learn not surprising for
two reasons. First, as we detail below, in terms of Marr’s levels of analysis (Marr,
1982) all of the models partially (the DPM) or totally fall in the algorithmic level.
Second, at this level, all of the models rely directly or indirectly on a classical
cognitive architecture with production systems operating on symbols retrieved
from LTM. From this perspective, learning is strongly associated with LTM
consolidation of novel categories or schemas (De Brigard, Brady, Ruzic, &
Schacter, 2017). In what follows, we elaborate on these two points. Furthermore,
within the specific case of the DPM, we reveal a gap in the field (lack of mental-
chronometry measurements) and argue that filling this gap is necessary for the
identification of the underlying measurable mechanism of the effect of writing on
learning.

3. Models of writing to learn and Marr’s levels of analysis.

Marr (1982) proposed that a cognitive system could be studied at three levels:
computational (what the system’s goal is —for example, creating/acquiring new
knowledge through writing), algorithmic (the set and order of operations the
system deploys on representations so that to achieve the computational goals —
e.g., retrieving representations from LTM, transforming those representations in
working memory, and creating the motor plan to be deployed during writing), and
implementational (the physical realization of the operations -e.g., interaction
between brain regions or the flow of information between the CPU and the hard
disk of a computer). At present, Marr’s levels of analysis prevail over other
approaches in the cognitive-psychology literature (Peebles & Cooper, 2015).

At the algorithmic level of analysis, the cognitive-psychology field agrees that
subjects achieve LTM consolidation’ of new representations via two (non-
orthogonal) operations: rehearsal and elaborative rehearsal (Tulving & Craik,
2000). Based on this assumption, we argue that current models of writing-to-learn
fall within the algorithmic level because they propose cognitive processes that
comprise rehearsal or elaborative rehearsal of retrieved information from LTM.
For example, in the dual-space model the evaluation of information in the context
of rhetorical goals demands active maintenance of both the retrieved information
and the rhetorical goals in working memory, this can be achieved only via
rehearsal operations. Similarly, knowledge transforming is a special case of
elaborative rehearsal of the retrieved content.

A more recent example of the “algorithmic core” of current models of writing
to learn is the DPM which assumes that new ideas or discoveries (c.f.,, learning)
emerge from transient changes in neuron-like units via “mutual constraint
satisfaction”. Crucially, Baaijen and Galbraith (2018) regard mutual constraint as a
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different (i.e., sub-symbolic) mechanism to access information in LTM. However,
based on a different read of the literature, we think that this mechanism is indeed
the implementation of the retrieval processes described in symbolic frameworks
(O'Reilly, Munakata, Frank, Hazy, & Contributors, 2012). As we argue below, the
neural substantiation of the DPM speaks to the implementation of the two main
algorithmic processes (i.e., knowledge-transforming and dispositionally-guided
processes).

3.1 Linking the algorithmic and implementational levels of analysis

The initial proposal of levels of analysis in cognitive science (Marr, 1982) gave rise
to self-contained algorithmic models of cognition and, by extension, models of
writing to learn (e.g., the dual-space model). However, there is an increasing
consensus in cognitive science that models of cognition and learning should also
be explained at the neural level (Peebles & Cooper, 2015). In Marrian terms, this
implies linking the algorithmic and implementational levels of analysis. In the field
of writing to learn, at present, only the DPM (Baaijen & Galbraith, 2018; Galbraith,
1992, 2009; Galbraith & Baaijen, 2015; Galbraith & Torrance, 1999) suggests such a
link by relying on the assumptions of the complementary learning system (CLS)
(O'Reilly, Bhattacharyya, Howard, & Ketz, 2014; Schapiro, Turk-Browne, Botvinick,
& Norman, 2017) —which is one of the most accepted learning models in the
computational cognitive neuroscience literature.

In the CLS, learning new knowledge or LTM consolidation takes place in two
different yet complementary ways which in the current version of the CLS
(Schapiro et al., 2017) are assumed to be at the implementational level of analysis.
First, single experienced events or episodes are quickly encoded in independent
representations. In this phase, contextual (i.e., episodic) information strongly
modulates changes in synaptic weights (i.e., connections) between neurons of the
hippocampus. These implementational operations would take place during the
knowledge-transforming process. Second, overlapping representations of single
episodes give rise to abstract (i.e., semantic) patterns. This second phase demands
many independent episodes and is reflected in changes of synaptic weights
between cortical neurons. These second set of implementational operations
would underlie the dispositionally-guided text production process.

To summarize, processes described in current models of writing to learn fall
within the algorithmic level of analysis. A clear exception is the DPM in which
dispositionally-guided text production and problem-solving are special cases
(algorithms) of elaborative rehearsal that are thought to be neurally (sub-
symbolically) implemented via the CLS. In what follows, we provide the
conceptual and experimental support to the thesis that “mental chronometry”
measurements (i.e., RT) are necessary to identify a mechanistic explanation of the
effect of writing on learning at the algorithmic level of analysis.
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3.2 The mental chronometry of the effect of writing on LTM consolidation

As we suggested above, writing-to-learn models speak to LTM consolidation as an
important effect of writing on learning. Clearly, research in writing to learn relies
on response accuracy (e.g., how well subjects recall the content of a source text
after performing a writing activity) as an index of LTM consolidation. However, it is
surprising that whereas in cognitive psychology and cognitive neuroscience
(including the CLS model) the mental operations that give rise to LTM
consolidation have been studied using not only response accuracy but also RT,
the writing-to-learn field has not provided this mental-chronometry measurement
as evidence of the effects of writing upon learning. This is especially relevant in
the case of the DPM. Achieving a CLS-grounded DPM of writing to learn requires
identifying a quantitative relationship between behavioral and neurophysiological
measurements. Whereas the neurophysiological measurements should capture
changes in the connectivity strength between neurons of the hippocampus and
the neocortex, the RT measurement should capture the differential effects of
dispositionally-guided and problem-solving processes on LTM consolidation.
More in general, none of the current research trends in the field acknowledge the
importance and necessity of this measurement. This is evident not only in the
writing-to-learn literature (Klein & Boscolo, 2016) but also in the general research
areas of academic and non-academic writing (Bazerman, 2018; Plane et al., 2017).
We think that this is an important gap in the field. Filling this gap could further the
goal of both resolving how writing leads to learning (i.e., comparing competing
algorithmic models of writing to learn) and, more importantly, identifying the
writing-to-learn mechanism at the implementational level of analysis —the neural
level.

3.3 Measuring LTM consolidation

One way to measure LTM consolidation is computing how fast the cognitive
systems retrieves stored information. This is frequently regarded as the latency
from a stimulus presentation (e.g., a word in a text) to the activation of its
schematic representation (e.g., the word’s meaning) in LTM. In the laboratory, this
latency has been used to study the relationship between the speed with which
readers recognize a word —referred to as lexical access— word-to-text
integration, and the ensuing text comprehension (Perfetti, 1985, 2007; Perfetti &
Lesley, 2002; Perfetti & Stafura, 2014; Stafura & Perfetti, 2014; Taylor & Perfetti,
2016). Based on these facts, if writing features learning as a hallmark then it should
decrease word-recognition time as an index of LTM consolidation. Furthermore,
this effect should be observed at the level of the stages comprised in the word-
recognition (retrieval) process. In the remainder of this introduction, we sketch
the general strategy we used to test our hypothesis and to identify the affected
stage of the retrieval process.
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4. Experimental approach

We implemented a simple experimental paradigm in which participants read short
passages, wrote or spoke a summary with the main idea of the passage, and
performed an episodic-memory word recognition task. We decided to use spoken
productions as a baseline condition because comparing production modalities
could reveal subtle writing-specific effects (Cohen-Goldberg, 2017). Specifically,
we needed to control for the effect of “language production”. This is because
language itself mediates learning (Langacker, 2008). In concrete, we hypothesize
that writing should decrease the RT in the recognition task (compared with the
effect of spoken productions) as an index of LTM consolidation.

Neuropsychological, computational, and animal-learning data show that
episodic cues facilitate recognition processes (Craik & Tulving, 1975) (Lepage,
Habib, & Tulving, 1998; Tulving, 1972, 1983). In addition, recent findings suggest
that episodic memory facilitates the reactivation of the situation model associated
with a written text (Johansson, Oren, & Holmqvist, 2018), which speaks to episodic
memory as an index of text comprehension and learning. In neurophysiological
terms, episodic memory influences the (cortical) consolidation of semantic
memory, via activity of the hippocampus (Ketz, Morkonda, & O'Reilly, 2013;
O'Reilly et al., 2014; O'Reilly & Norman, 2002; Schapiro et al., 2017). Therefore, in
the context of a writing-to-learn activity we suggest that an initial behavioral effect
of writing on word-recognition processes takes place at the level of episodic
memory, specifically in the ability to discriminate whether a word has been
recently read.

To explore and identify the specific stage(s) of the retrieval process that is
affected by learning through writing, we fit drift-diffusion models to data collected
in the episodic-memory word recognition task. Recently, lexical access has been
regarded as an evidence-accumulation process (Anders, Ries, van Maanen, &
Alario, 2015) - a family of decision-making models that fall at the algorithmic level
of analysis. One of the most influential evidence-accumulation models of lexical
access is the Ratcliff's drift-diffusion model (Ratcliff, 1978; Ratcliff, Gomez, &
McKoon, 2004) which pertains to a large family of models of fast (i.e., at a
millisecond scale) two-alternative forced choice (2AFC) decision-making tasks
(Forstmann, Ratcliff, & Wagenmakers, 2016; Ratcliff, Smith, Brown, & McKoon,
2016).

Understanding the dynamics of the drift-diffusion model is straightforward.
Consider the RT distribution collected from a subject that performed an episodic-
memory task in which he or she responded as quickly and as accurately as
possible whether a test word appeared in a previously read passage. In this model,
the subject accumulates information until reaching a threshold. After reaching this
threshold, the subject executes a response.

Formally, the model comprises four basic parameters (Figure 1) representing
the accumulation threshold (a), the starting point of the accumulation process (z),
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the accumulation (or drift) rate (v), and the nondecision processes (t) such as
stimulus encoding and motor execution (i.e., sensorimotor delay). Parameters
representing the intertrial variability of the drift rate (sv), starting point (sz), and
nondecision processes (st) are also included. In the field of language processing,
previous works have reported the effects of experimental manipulations and
populations on these parameters. For example, the word-frequency effect on
lexical access is captured by the drift rate (Ratcliff, Gomez, et al., 2004) whereas the
effect of age on episodic LTM retrieval is capture by the nondecision parameter
(Spaniol, Madden, & Voss, 2006). In the current work, we expect that the effect of
writing on LTM consolidation will be captured by one or more parameters of the
drift-diffusion model.

RT distribution

RT (ms)

Figure 1. Basic Formulation of an Evidence-accumulation Model. The basic model comprises
four parameters: decision threshold (a), starting point (z), drift rate (v), and nondecision time

(t).

5. Materials and Methods

5.1 Participants

In this study, 25 university students (22 females, A age = 20.59, SD = 2.37) from
Pontifical Catholic University of Valparaiso were recruited via campus and class
advertisements. They voluntarily participated in the experiment, signed informed
consent forms, and received course credit as compensation. The study was
approved by the Institutional Review Board of the Pedagogical Institute of Caracas
as part of a larger project (Silva, 2016). Participants spoke Spanish as L1.
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5.2  Procedure

Participants began the experiment by putting on a head set and reading the
general instructions on a computer screen. They performed one familiarization
block followed by eight experimental blocks with two conditions (spoken and
written, Figure 2). Each condition comprised four blocks, and each block included
reading, production, and memory tasks —executed in this order. In the reading
task, participants read and summarized (mentally and silently) short passages
(Mords = 203, SD = 37.67; Mientences = 9.37, SD = 3.29). In the production task, they
wrote or spoke a summary of the passage. Participants were informed about the
linguistic production modality just at the beginning of the production task. In the
memory task, participants performed an episodic-memory recognition task with
text and no-text words. They had to decide as

Task 1 Task 2 Task 3

Reading Production Episodic Memory

Written or Spoken Summary

...was it in the text?

Text Title

XXXX XXXX  XXXXX XXXXX

Q
XXXX XXXX XXX XXXX XXX XXX

XXX XXXXXX XX XX XX XXXXX
XXX XXX XXXX. /
XXXXX XXXXXXX XXXX XXX m
: L a

“XXXXX"

“Yes™No”

XXXXXXXX XXX XXXX XX,

Figure 2. Experimental Paradigm.

quickly and as accurately as possible whether or not the test word appeared in the
passage. In total, there were 60 text and 60 no-text words per condition. After
finishing the memory task, a new block began. The stimulus delivery program was
E-prime 2.0 (Schneider, Eschman, & Zuccolotto, 2012). Below, we describe each
task in detail.

Reading task

The reading task began with a text window depicting a passage that included a
title at the top of it. The whole passage was visible on the screen during 2 min. On
the top right corner of the screen, a timer showed the remaining time. Each
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passage was selected randomly (without replacement) from a pool of eight texts.
The rhetorical structure of four texts was argumentative and with predominant
hypotactic organization whereas the rhetorical structure of the other four texts
was expositive and with predominant paratactic organization. We provide
examples of each type of text in appendices A and B. A given passage could
appear in any modality across participants. During this task, participants were not
allowed to take notes. After the 2-minute reading time, the text window
disappeared.

Production task

The production task began with an instruction window. Depending upon the
linguistic production condition, participants heard or read that they had to
pronounce or write a summary with the main idea of the passage. In the spoken
condition, participants heard an instruction asking to pronounce the summary of
the passage after hearing a tone. During the duration of the instruction window, a
cartoon depicting a woman wearing a head set was displayed. In the written
condition, participants read an instruction on the center of the screen asking to
type the summary when a textbox appeared. The instruction window lasted 11 s.
When this time elapsed, the instruction (or cartoon) disappeared and a
production window appeared.

The production window lasted 90 s, a timer on the top right corner of the
screen showed the remaining time. In the spoken condition, a cartoon depicting a
microphone appeared on the center of the screen with the following instruction
below “ahora pronuncia la idea central del texto” (now say the main idea of the
passage). In the written condition, a textbox appeared on the center of the screen
with the following instruction below “ahora escribe la idea central del texto” (now
write the main idea of the passage). For a summary to be considered valid,
participants had to produce at least two sentences. Grammar and linguistic style
were not considered as a correct-response criterion. We informed participants on
these conditions during the general instructions and the familiarization block.

Memory task

In the memory task, we instructed participants to respond as quickly and as
accurate as possible if the test word appeared in the passage they read and
summarized. On the computer keyboard, participants pressed the “k” key for
“yes” responses and the key for “no” responses. A word was shown in the
middle of the screen and remained visible until a response was detected or until
2500 ms had elapsed. In a single block, the task comprised 15 texts and 15 no-text
words. Text words were noun words extracted from the passage and were passage
specific. This is, they appeared only one time in the experiment. No-text words
were chosen randomly (without replacement across the experiment) from a pool

” " I ”
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of 120 words selected from Current Spanish Reference Corpus (Real Academia
Espafiola). A new test word appeared immediately after the termination of a trial.
We provide examples of the source text, text and no-text words in appendices A
and B.

5.3  Data Analysis

We performed two analyses of the memory-task data using Bayesian statistics.
Bayesian statistics is now a common method in psychological sciences
(Appelbaum et al., 2018) and represents a response to the call for a “new statistics”
in terms of a shift from the frequentist null hypothesis significance testing to
estimation of magnitudes with uncertainties (Kruschke & Liddell, 2017a, 2017b).
Therefore, we performed estimations with quantified uncertainties of the
parameters of interest.

In the first analysis, we computed the posterior distribution over mean RT
differences of correct and incorrect responses between conditions. For
completeness, we also computed mean RT differences between correct and
incorrect responses within conditions. The mu (u) parameter represented the
estimated mean difference. We analyzed correct and incorrect responses
separately. Participants’ responses were coded as “correct” or “incorrect”
depending upon whether they matched the expected responses. This is, “yes”
responses were expected for text words whereas “no” responses were expected
for no-text words.

Prior distributions were informative. To estimate posterior distributions of
parameters we used Markov chain Monte Carlo (MCMC) methods. The chain
length (i.e., the MCMC sample size) was 100,000. The number of burn-in iterations
was 1000, and the chains were generated with no thinning. We assessed
convergence by computing the R-hat (R) statistic (Gelman & Rubin, 1992). We
report the estimate and the posterior 95 % highest density interval (HDI) which
indicates the most probable parameter value given the data. As a decision rule, we
accepted a difference in mean RT if the 95 % HDI comprising the mean of the
most credible values for u fell below 0. The analysis was implemented in R and
JAGS (Kruschke, 2013a).

In the second analysis, we fit 15 Bayesian hierarchical drift-diffusion models
(HDDM) to the distributions of RT and accuracy data (Wiecki, Sofer, & Frank,
2013). Hierarchical Bayesian methods allow to estimate both subjects and group
parameters simultaneously. We explored all possible combinations of “a”, “z”,
“v”, and “t” as free parameters (Table 1). Furthermore, intertrial variability of z, v,
and t (“sz”, “sv”, and “st”) was estimated in every model. Prior distributions were
informative. The chain length of each model was 5,000. The number of burn-in
iterations was 250, and the chains were generated with no thinning.
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Table 1. Model Space and Results of the HDDMs

Model Parameters DIC R
Free Fixed

M1 a v,z t 5036.68 —
M2 \% a, zt 5037.41 —
M3 z a,v,t 5035.99 —
M4 t v,z 5027.61 1

M5 a, v zt 5037.84 —
M6 az v, t 5037.20 —
M7 at A4 5028.84 —
M8 A4 a, t 5038.77 —
M9 v, t a,z 5031.14 —
M10 z, t a, Vv 5029.41 —_
M11 v,z t 5038.40 —
M12 vt z 5030.45 —
M13 v,z t a 5032.08 —
M14 azt \Y 5031.76 —
M15 v, zt — 5033.66 —

Note. R statistic was computed only for the winning model. DIC (deviance information
criterion).

To select the winning model, we used the deviance information criterion (DIC)
number as an approximation to Bayesian model evidence. At a group level, we
report the parameter estimates of the winning model. For every parameter of
interest, we report the percentage of the posterior estimates (i.e., the posterior
proportion, PP) that differs from 0. We also report subject-wise parameter
estimates. We assessed convergence by computing the K statistic. Goodness of fit
was assessed via posterior predictive checks (Kruschke, 2013b).

6. Results

Trials with either RT > 2000 ms (1.3 %) or RT < 200 ms (1.1 %) were excluded from
the analyses. Table 2 shows the relevant descriptive statistics.

6.1 Differences in Accuracy and RT

The first analysis revealed that response accuracy did not differ across conditions,
U = - 0.006, PP = .6 (Figure 3). However, on correct trials participants responded
faster in the written condition than in the spoken condition, y = - 0.02, PP = .951.
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RTs of incorrect responses did not differ across conditions, y = 0.008, PP = .333.
However, correct responses were slower than incorrect responses in both the
spoken p=0.119, PP = 1 and the written y = 0.132, PP = 1 conditions (Figure 4).

Table 2. Summary Statistics of Variables of Interest

Condition Response Dependent Variable Mean SD
Accuracy (%) 814 416
Spoken Correct 870 292
RT (ms)
Incorrect 971 333
Accuracy (%) 80.5 7.9
Written Correct 851 279
RT (ms)
Incorrect 947 340
Accuracy RT correct — RT incorrect —

I Mean
Written > Spoken

mean =-0.00567

60.6% < 0 < 39.4%

95% HDI

-0.0479 0.0358

r T T T T 1
006 004 002 000 002 004
n
Effect Size

mode =-0.0498

60.6% <0 <39.4%

95% HDI

r T T T T T T 1
08 06 04 02 00 02 04 06

(u-0)/o

Written > Spoken

mean = -0:0205

95.1% 40 < 4.9%

95% HDI

-0.0452 0.00433

005 004 003 002 001 000 001

Effect Size

mode =-0,342

95.19% <\0 < 4.9%

95% HDI A
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mean’=0.00823
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-0.328 i 0:506
T T r T )
04 02 00 02 04 06
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Figure 3. Posterior Distributions of Parameter Estimates about Differences in RT between
Conditions. Correct responses were faster in the written condition whereas no difference
was detected in incorrect responses. R'=1 in all estimations.
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Figure 4. Posterior Distributions of Parameter Estimates about Differences in RT

within Conditions. Incorrect responses were slower than correct responses

in both conditions. R=1 in all estimations.

Table 3. Parameter Estimates of the Winning HDDM (M4)

Parameter v t(spoken) t(written)
mean std mean std mean std mean std mean std

Group 1489 0075 0495 0014 1532 0105 0511 0.022 049  0.004
Subject 1 1.586 0.066 0497  0.027 1172 0.157 0518 0.011 0.502 0.015
Subject 2 1559 0066 0360  0.027 1700 0170 0383  0.012 0368  0.016
Subject 3 1407  0.070 0.523 0.027 1.589 0.184 0.534 0.017 0519 0.021
Subject 4 1214 0055 0527 0027 1148 0186 0465 0014 0450  0.018
Subject 5 1.613 0.079 0.493 0.027 1.571 0.165 0.543 0.016 0.528 0.020
Subject 6 1700 0085 0522 0027 1655 0180 0591 0.016 0575  0.020
Subject 7 1.645 0.074 0495 0.027 1.450 0.163 0.499 0.011 0484  0.015



SILVA & LIMONGI * THE MENTAL CHRONOMETRY OF WRITING TO LEARN| 226

Subject 8 1.474 0.080 0.570 0.027 1.589 0.193 0.663 0.019
Subject 9 1792 0093 0491 0.027  1.721 0176 0475  0.016
Subject 10 1.011 0.051 0554  0.027 1.684 0.218 0.647  0.013
Subject 11 1.491 0.072 0.500 0.027 1.443 0.170 0.580 0.017
Subject 12 0.956 0.047 0527  0.027 1.643 0.210 0.525 0.012
Subject 13 1.502 0.064  0.465 0.027 1.119 0.162 0397  0.014
Subject 14 1528  0.073 0.513 0.027 1275 0.168 0564  0.019
Subject 15 1.334 0.064 0.498 0.027 1.882 0.191 0.526 0.012
Subject 16 1.234 0.060 0.539 0.027 1.510 0.186 0.561 0.015
Subject 17 1.109 0.054 0.499 0.027 1.691 0.193 0.511 0.013
Subject 18 1350  0.065 0.565 0.027 1589 0187  0.653 0.014
Subject 19 2.202 0.110 0.422 0.027 1.710 0.161 0.319 0.012
Subject 20 1.785 0.079 0413 0.027 1818 0177  0.404  0.009
Subject 21 1372 0.067  0.583 0.027 1.440 0.189 0567  0.017
Subject 22 1.365 0.062 0524 0027  1.143 0177 0556  0.016
Subject 23 2.239 0.112 0.348 0.027 1.965 0.183 0.316 0.011
Subject 24 1447  0.062 0427  0.027 1215 0.161 0.444 0.016
Subject 25 1141 0.054 0.532 0.027 1.554 0.195 0.501 0.012

0.648
0.460
0.631
0.564
0.509
0.381
0.548
0.511
0.546
0.496
0.637
0.303
0.389
0.552
0.540
0.301
0.428
0.486

0.023
0.020
0.017
0.021
0.016
0.018
0.023
0.017
0.019
0.017
0.019
0.016
0.013
0.021
0.020
0.015
0.020
0.016

Note. Intertrial variability of z (sz), v (sv), and t (st) were estimated only at a group level: sz =
0.120, std =.06; sv = 1.161, std = 0.102; st = 0.244, std =.009. In every subject, the t parameter
was smaller in the written condition than in the spoken condition. This suggests fixed effect
at the level of the model structure and random effect at the parameter level.

6.2 Evidence-accumulation Models

Bayesian model comparison shows that the model comprising the nondecision
time as free parameter performed better than the other models (Table 1). Table 3
shows the parameter estimates at both group and subject levels. The nondecision
time parameter was larger in the spoken condition than in the written condition
(PPs =1, Figure 5). Interestingly, we observed this effect not only at a group level
but also in all subjects. Posterior predictive checks show that the model fairly
reproduced the observed data (Table 4).
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Table 4. Posterior Predictive Checks

Statistic Observed  Model generated SD SEM MSE  Credible
Accuracy 0.81 0.81 0.05 0.0003  0.003 True
RT (Upper bound) 860 ms 882 ms 0.10 0.004 0.01 True
RT (Lower bound) -959 ms -982 ms 0.17 0.0006 0.03 True

Note. Observed and model-generated values are collapsed across conditions. Upper bound
= correct responses, Lower bound = incorrect responses, SD = standard deviation, SEM =
standard error of the mean, MSE = mean squared error, Credible (True) = in the 95% credible
interval.

6.3  Post-hoc Analysis

As per suggestion of our reviewers and from a language production perspective
(Margolin, 1984; Olive, 2014; Torrance et al., 2018), we performed a post-hoc
analysis to evaluate two alternative explanations of why the written condition
yielded fast RTs compared with the spoken condition. First, if the written
summaries were longer or more detailed (e.g., with more propositional content)
than the spoken summaries, then the inclusion of the target words in the
summaries was perhaps more likely and could decrease the latency of the probe
word in the recognition task. Second, it could be the case that the amount of time
engaged in the summary task correlates with subsequent recognition accuracy
and RT. If the effect persists after accounting for time on task, then it could
indicate that writing enhances the consolidation of the words in LTM because of
the knowledge-transforming process elicited through writing. If it does not
persist, then the results may instead imply that writing merely engages the learner
for a longer amount of time in thinking about the text without altering the
qualitative nature of the learning process. To resolve these uncertainties, we first
compared the quality of the summaries and the specific amount of time allocated
to summary production within the 90 s window (time on task).

From the perspective of the communicability theory (Parodi, 2011), we assumed
that summary quality indexes propositional content and production length in
terms of (0 — 4) rating scale (Silva, 2016) with the following criteria: (0) no
production, (1) retrieval of just the main idea, (2) retrieval of the main-idea along
with non-specific details, (3) retrieval of the main idea along with specific
supporting details, and (4) retrieval of the main idea along with elaborative
rehearsal (e.g., paraphrasis). Based on this scale, a production graded with “3” was
longer than a production graded with “3” was longer than a production graded
with “1”.
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Figure 5. Accuracy and RT Histograms of Observed Responses, Visual Representation of the
Winning Model, and Difference in Posterior Probabilities of “t” Estimates. The winning
model was fitted to the distributions of RT and accuracy data of both conditions. The model
reproduced these distributions (see also Table 4). Nondecision time increased in the spoken
condition. The posterior distributions of “t” estimates do not overlap, meaning that they
fairly differ. The 100% of posterior proportions (PP) differ from 0. The actual parameter value
of the written condition is relative to the spoken condition (0.51 - 0.015).

Likewise, a production graded with “4” had more propositional content than a
production graded with “3”2. Time on task was logged automatically by the
stimulus delivery program.

Following, we fit four mixed-effects linear models to the RT data of correct
trials. Model 1 comprised the main effect of production modality. Model 2
comprised the main effect of summary quality, main effect of linguistic modality,
and the Summary Quality x Production Modality interaction. Model 3 included the
main effects of production modality, time on task, and the Production Modality x
Time on Task interaction. We also fit a full model (model 4) comprising the main
effects of production modality, summary quality, time on task, and all possible
interactions. In all models, subjects were included as random effects. We relied on
model comparison procedures to evaluate the post-hoc hypotheses, using the
lowest AIC (Akaike information criterion) number as a decision rule for model
selection. If any of the post-hoc hypotheses accounts for the differential effect on
RT, the lowest AIC number would be associated to either model 2, 3, or 4.
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The results of this post hoc analysis showed that the quality of the summaries
was better in the written condition (M = 2.60, SD = 0.50) than in the spoken
condition (M = 2.38, SD = 0.63); y = 023, PP = .97 (Figure 6). Furthermore,
participants took more time to produce a summary in the written condition (M =
78.35's, SD=11.35 s than in the spoken condition (M=34.15s, SD=11.9s); u=44.2,
PP = .999 (Figure 6). The results of the mixed-effects models showed that the
simple model 1 outperformed all the other more complex models (AlCnodel-1 = -
93.84, AlCmodel-2 = -81.80, AlCmodel-3 = -64.71, AlCmodel4 = -25.74). RT was longer in the
spoken condition than in the written condition, § = .01, (SE = .007).

A Mean Effect Size
mean = 0.233 mode = 0.403
3.4% < 0 < §6.6% 3.4% <0 496 6%
95% HDI 95% HDI
-0.0197 0:484 -0.0479 0.867
r T T T T T 1 r T T T T T 1
01 0.0 01 02 03 04 05 0.2 00 02 0.4 06 0.8 1.0
" (n-0)/o
B Mean Effect Size
mean = 44.2 mode =4.03
0% <0 < 100% 0% < 0 < 100%
95% HDI
39.6 488 95% HDI
— 69
T T T T T 1 r T T T g 1
] 10 20 30 40 50 ] 2 4 6 8
n (u-0)/o

Figure 6. Results of the Post-hoc Analysis. Posterior Distributions of Parameter Estimates
about Differences in summary quality (A) and time on task (B) across conditions.

7. Discussion

We introduced a paradigm to measure the effects of writing on LTM at a
millisecond scale. Participants read short passages, wrote or voiced a summary,
and performed an episodic-memory word recognition task. After producing the
summary, participants read words and decided as quickly as possible whether
each word appeared in the passage. With this paradigm, we evaluated the
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hypothesis that writing increases LTM consolidation (indexed by decreased word-
recognition time) and explored how a drift-diffusion model captured this effect.
Bayesian estimation methods showed that written productions decreased the RT
of correct responses, compared with spoken productions. This differential effect
mapped onto the model’s nondecision parameter. Our results provide the first
mental-chronometry evidence of the effect of writing on learning.

The fact that incorrect responses were faster than correct responses
constitutes a proof of concept of the use of speeded memory recognition task in
the context of writing to learn. This is because in 2AFC decision making tasks
incorrect responses are faster than correct responses (Ratcliff, 1985). Another
proof of concept of the method is the fact that writing did not increase accuracy
(compared with speaking) in the memory task. In practice, RT and accuracy are
negatively correlated in 2AFC decision making tasks (Heitz, 2014). This causes the
subjects to engage in a speed accuracy trade off. This is relevant for future works
in writing to learn because the experimenter could manipulate this trade-off effect
depending upon the research objective. For example, if one wants to observe the
effect of production modality on accuracy rather than on RT we could increase
experimentally the accuracy in the written condition. One could do this via
condition-specific instructions. In the written condition, we could ask the subjects
to pay more attention to the accuracy of the responses and “to take their time to
respond”. In the spoken condition, we could ask them to respond both as
accurately and as quickly as possible. Based on the expected speed-accuracy trade
off we should expect higher accuracy, but longer RT, in the written condition than
in the spoken condition.

The HDDM results suggest that writing facilitates initial stages of learning by
decreasing -via episodic cues— either the encoding phase of memory retrieval or
the motor response. Heuristically, this explains why “when we write the summary
of a text we tend to retrieve words that we believe were present in the text”. Note
that adding the decision threshold (M7) or starting point (M10) as free parameters
could have increased the goodness of fit of the model. However, DIC values
suggest that this gain in fit would have been accompanied by a loss in
generalizability, meaning that these more complex models would fit noise.

A qualitative reading of these results is that to make a correct response about
whether a test word was present or not in a passage, participants accumulated the
same amount of evidence in both conditions, began accumulating evidence at the
same starting point, and at the same rate. However, participants needed less time
to perform nondecision processes (i.e., stimulus encoding and/or motor response)
after writing a summary than after pronouncing the summary.

7.1  Language production and memory retrieval: a specific writing effect

In our paradigm, we found a specific differential effect of writing on episodic-
memory recognition using a spoken production as a control condition. The most
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credible value of the effect size was Cohen’s d = - 0.39 —note that the negative sign
only indicates the direction of the comparison. In a previous work (Arnold et al.,
2017), participants performed problem-solving tasks two days after performing
learning activities that required retrieval (free recall and essay writing) and non-
retrieval (note taking and highlighting) processes. They found that (compared with
highlighting) essay writing improved problem-solving performance —with an effect
size of Cohen’s d = 0.44. Interestingly, Arnold et al. (2017) used a no-language
production baseline. In the context of our results, we suggest that not accounting
for the main effect of language production could cause a larger effect of writing
because spoken productions increase learning more than no-language activities
(MacLeod & Bodner, 2017).

From a language production perspective (Margolin, 1984; Olive, 2014; Torrance
et al., 2018), the post-hoc analysis showed that peripheral processes such as the
physical act of forming the letters or encoding the letter sequence during spelling
(i.e., the articulatory stage of language production) do not account for our
findings. This speaks to central processes such as the planning or
conceptualization phases as the loci of the differential effect of writing. One
central process that could be responsible for this effect is memory retrieval. Trying
to retrieve material from LTM following a period of initial study leads to better
LTM consolidation than a further period of study for equivalent time (Karpicke &
Roediger, 2008; Roediger & Butler, 2011). This suggests that "mere retrieval" -
comprised, for example, in knowledge telling or dispositionally-guided text
production - is sufficient to lead to learning.

Interestingly, we find congruent the above fact with a previous work in which
writing activities that demanded memory retrieval led to better results on learning
than non-retrieval writing activities (e.g., note taking) (Arnold et al., 2017).
However, our control (spoken) condition also demanded memory retrieval. If we
assume the Donder’s subtraction method (Donders, 1969) - still prevalent in the
mental-chronometry literature - the writing effect detected here should be
associated with additional elaborative processes (i.e., elaborative rehearsal) per—
formed over the retrieved information. These processes might not take place in
the spoken condition. It is worth noting however, that whereas the subtraction
methods reveal processes that are unique to writing it does so by subtracting the
effect of processes that are shared by both modalities.

We speculate that reconstructive processes and text revision could be two
writing-specific operations that facilitate LTM consolidation. When the writer
attempts to summarize the text, he or she no longer has access to the source text
but instead faces the uncertainty about how well the summary captures the
meaning extracted from the text. At this point, there are two sources of
uncertainty. The first source refers to how well the extracted meaning
corresponds to the text whereas the second source refers to how well the
summary text under construction captures the meaning of the text. With
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reconstructive processes, the writer adds in plausible inferences about what the
text must have said whereas with text revision the writer formulates new text to
bring the emerging summary into line with their conceptual representation.
Reading (i.e., revising) the externalized text then reduces the uncertainty. These
processes sound very like the knowledge-constituting process (Galbraith &
Torrance, 1999). An initial attempt to summarize conceptual content mismatches
the underlying content so a new synthesis is generated to express the missing
content, which in turn fails to fully capture the content, so a further synthesis
takes place. The result is an explicit proposition or series of propositions in
episodic memory.

As revealed by the winning HDDM, the observable consequence of a specific
effect of writing manifests itself at either the encoding phase or the motor
response phase during the retrieval process of the word-recognition task. The
nondecision parameter does not differentiate between these two phases. We
found this very interesting because in emerging theories of brain function such as
predictive coding and active inference (Parr & Friston, 2017; Pezzulo et al., 2016)
encoding processes and motor responses are two different ways through which
the organism establishes an equilibrium with the environment. In particular, from
this perspective we have found that premature motor responses (i.e., actions) are
strongly associated with “prior beliefs” (Limongi, Bohaterewicz, Nowicka, Plewka,
& Friston, 2018) or consolidated LTM which in the context of the dual-process
model is equivalent to the dispositionally-guided process. This conceptual
relationship could result in a nice link between the field of writing to learn and
emergent theories of brain function, which would regard writing to learn as a
special case of epistemic behavior —epistemic writing. Therefore, a future study
could adjudicate between these processes by manipulating experimentally, for
example, the orientation of the probe words. This is because word orientation
affects specifically the encoding phase (Gomez & Perea, 2014).

7.2 Alternative explanation

Although we controlled for the effect of language production by using a spoken
condition, one could think of orthographic priming as an alternative explanation
for the “writing effect” on RT. The rationale underlying this possible explanation is
that spoken and written productions might comprise different cognitive (and
neurocognitive) paths to access lexical knowledge (Cohen-Goldberg, 2017),
lexical-semantics differences (Biber, 1988), and differences between written and
spoken registers (Louwerse, McCarthy, McNamara, & Graesser, 2004).

Unlike the spoken summary, the written summary involved orthographic
representations. Given that the source text and the text/no-text test words were
also orthographically represented, we could naturally think that general priming
of orthographic representations in the written condition could have decreased the
RT. However, a previous work on priming in “masked” and “unmasked”
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conditions (Gomez, Perea, & Ratcliff, 2013) allows us to rule out this alternative
explanation. Below, we do this by detailing the relationship between the
differential effect of masked and un masked priming on HDDM parameters.

Consider the priming effect of the word “book” on the recognition time of the
word “library” in masked and unmasked conditions. A masked trial would
comprise, for example, the following sequence: (1) a 500-ms mask (e.g.,
urxxxxxxx) followed by (2) a 60-ms prime word (e.g., “book”), and then by (3) the
probe word (e.g., “library”). In the unmasked trial, there is no mask, and the prime
word would last 560 ms. In the masked condition, the subjects cannot detect the
briefly presented (50 ms) prime word. However, the priming effect (faster
recognition of the probe word) occurs. This reduction in RT is captured by the
nondecision parameter whereas the priming effect in the unmasked condition is
captured by the drift rate parameter. In the current task, if there had been a
priming effect of orthographic representations on RT this effect would have
mapped onto the drift-rate parameter because orthographic cues would play the
role of unmasked primes.

Despite our modeling argument, a future experiment could evaluate
empirically the orthographic-priming explanation by including extra control
conditions in which both the initial text and the recognition-memory stimuli are
presented in auditory form. If the orthographic explanation for the writing
superiority effect is valid, then writing should show no advantage over speech
when input and output are auditory in form. By contrast, if the effect is a genuine
writing superiority effect, the advantage should still be present when text and
recognition cues are presented in auditory form3.

7.3 Limitations

The current experiment unveils a cause-effect relationship, which is what we
could expect from a laboratory study. However, it is important to interpret our
results in the context of real situations. In this task, subjects did not have access to
the source text when they were composing the summary. This allowed us to
capitalize on the effect of retrieval on learning. However, as highlighted by one of
our reviewers, this is “probably atypical of writing to learn tasks” in the classroom.
Writing is generally intermixed with reading, which makes writing to learn “a
discourse synthesis task”. In the same line of arguments, the writing to learn
literature has often included measures that are not merely recalled but require
learners to draw new inferences or apply their knowledge to solve novel
problems. Arguably, inference tasks are good measures of the higher level of
learning that educators pursue with writing to learn activities. Interestingly, the
outcome of inference tasks can also be studied using mental chronometry and
computational models, being a tremendous tool for measurement purposes in
education.
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Another limitation of the current study is worth noticing. A major goal of our
work was to make initial progress on the formal (i.e., mathematical) understanding
of the effect of writing on learning. To achieve this, we opted to identify first - as
we indeed did - the main effect of linguistic modality (i.e., writing vs. speaking).
With this in mind, we fully randomized the stimuli across participants, conditions,
and trials to control for a series of linguistic variables (e.g., word length and word
frequency) that could affect the diffusion-model parameters (Aschenbrenner,
Balota, Gordon, Ratcliff, & Morris, 2016; Ratcliff, Thapar, & McKoon, 2004).
However, we assumed that such variables affected both conditions alike. Future
works should experimentally evaluate this assumption.

7.4 Towards a cognitive neuroscience of writing to learn: combining
neuroimaging, computational, and mental-chronometry

Our primary focus in what follows is detailing how the current paradigm could
serve as a link between the description of writing-to-learn operations, the
quantitative measurements of their ensuing effects, and their neural correlates.
We think that a precise description of this link could further the goal of the most
important claim of educational neuroscience, “...that new insights about the brain
can improve classroom teaching” (Blakemore & Frith, 2005). As an exemplar case,
we sketch how our approach and results could take the initiative comprised in the
DPM one step further. Specifically, we could achieve a CLS-grounded DPM of
writing to learn by combining the current methodology with dynamic causal
models (DCM) of functional magnetic resonance imaging (fMRI) (Forstmann et al.,
2016; Friston, 2007). This combined strategy is a gold standard in cognitive
neuroscience and is currently applied in studies ranging from basic perception
and learning processes (Stephan & Friston, 2010) to neuropsychiatric disorders
(Limongi et al.,, 2018). Therefore, it could be used straightforwardly to test the
implementational predictions of the DPM. Naturally, this approach would inform
current proposals of the relationship between neuroscience and education.

Recall that the DPM assumes that writer’s disposition (i.e, knowledge
constituting) leads to learning via recursive activation of semantic memory (in the
cortex). Conversely, writing would lead to learning via problem-solving
(knowledge-transforming) if it focuses on stable activations of episodic memories
(in the hippocampus)* The DPM makes predictions of these two cases during the
first stages of LTM consolidation (during the first milliseconds after completing
the writing activity) at both the algorithmic (drift-diffusion models) and
implementational (dynamic causal models) levels of analysis.

At the algorithmic level of analysis, the first case should impact the drift rate of
the drift-diffusion model, because semantic activation during word recognition is
associated with the quality of the encoded information (Ratcliff, Gomez, et al.,
2004). The second case, as this work reveals, implies changes in the nondecision
parameter. Furthermore, the DPM proposes that gptimal learning takes place via
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conjoint deployment of both processes, which should map onto both the drift
rate and the nondecision parameters. Interestingly, previous works have shown
that low and high self-monitors tend to learn by deploying the dispositionally-
guided and problem-solving processes respectively (Baaijen & Galbraith, 2018).

Note that knowledge constituting alone could affect the drift rate at later
stages of LTM consolidation, but not during the first milliseconds after the
production phase (i.e., the current experiment). For example, if subjects worked
on the same summary over and over, we would expect a stronger cortical
participation, as an index of stronger LTM consolidation. This consolidation would
map onto a change in the drift rate. We speculate that this could occur when a
subject works on the same draft for several days. This might nicely explain why
“putting away” a draft a few days before proofreading it allows the writer to detect
errors. The draft has not changed but the writer’s knowledge system certainly has!

At the implementational level, the DPM predicts transient changes in
connectivity strengths between the cortex and the hippocampus (writer’s
disposition) and within the hippocampus (problem-solving). These predictions
could be tested via DCM of fMRI data. In DCM, two types of inputs give rise to the
effect that one brain region (e.g., the hippocampus) exerts over another region
(e.g., the entorhinal cortex): driving and modulatory inputs (Figure 7).
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Figure 7. Dual-process Model Predictions at the Implementational Level of Analysis.
Three dynamic causal models represent predictions informed by the current results
(A) and two competing models (B - D).

Whereas driving inputs directly “perturb” a region, modulatory inputs affects the
connectivity strength between regions. Furthermore, both types of inputs can
modulate within-region (intrinsic) connections. We can map the DPM predictions
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on DCM inputs by setting trial-wise RT measurements as modulatory inputs on
connections and groups (high vs. low self-monitors) as direct inputs on the
hippocampus and the cortex respectively. This example provides a feasible (i.e.,
biologically realistic) approach for the study of the neural basis of writing to learn
congruent with current algorithmic models.

8. Concluding remarks

On a general note, the acute reader can see that our main findings neither
contradict nor confirm the assumptions of any writing-to-learn model (or any
theory about the epistemic properties of writing). This is because we did not aim
at resolving the question of which (algorithmic) set of operations fulfils the
(computational) learning goal of writing. Rather, with the current paradigm we
pursued a more modest theoretical ambition and a more general methodological
tool that can be used by researchers in the writing-to-learn field. We tried to
substantiate the idea that research on writing to learn should include mental
chronometry and mathematical models. There are other models of writing to learn
whose predictions could be tested using this approach —e.g., Klein et al. (2017),
even when such models are self-contained at the algorithmic level of analysis. This
is because the common denominator among these models is that they predict
specific writing effects on LTM consolidation. More interestingly and with a
broader perspective, some reductionist neuroscientific approaches suggest that
computational goals can be explained directly from an implementational
perspective (Bickle, 2015) —i.e., bypassing the algorithmic level. Regarding this
point of view, the approach on offer here opens a research strategy for testing, for
example, innovative hypotheses on epistemic writing relying on predictive coding
and active inference (Silva & Limongi, 2017, 2018), which links directly the
computational and implementational levels.

Notes

1. The information processing theory regards “encoding” as the process or set of
processes that the system executes to store information in LTM. In this work,
we use LTM consolidation. In the Experimental Approach section, we regard
“encoding” as a nondecision parameter of the drift-diffusion model.

2. We acknowledge that the definitions of production length and propositional
content vary across linguistic theories.

3. We acknowledge and thank one anonymous reviewer form stating this
alternative explanation and the related experiment.

4. Current developments of the CLS suggest that the hippocampus could also
mediate the generation of abstract patterns (Schapiro et al., 2017)
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Appendix A

Sample Passage (and Test Words) with Expositive Rhetorical Structure and with

Predominant Paratactic Qrganization

Text

Los murciélagos tienen caracteristicas fascinantes relacionadas con su
genética, esfilo de vida y habilidades de supervivencia_ En relacion a la
genética, todas las especies de murciélagos existentes pertenecen al reino
animal de los mamiferos con la caracteristica esencial de que pueden volar.
Acerca de su estilo de vida puede decirse que son animales gue duermen
suspendidos -cabeza abajo- de las ramas de los drboles o tambign pueden
encontrarse en las salientes de las piedras en alguna cueva. Entre la variedad
bien documentada de especies de murciélagos sorprenden los llamados
murcigélagos come-insectos. Los murciglagos comen insectos se alimentan de
pardsitos que dafian las cosechas y enferman a los animales de las granjas.
En cuanto a las habilidades de supervivencia de los murciélagos es
asombrosa la habilidad de escuchar el caminar de insectos o el aletear de los
gue tienen alas. Pero la mayor de as habilidades es el sistema de eco-
localizacion, es decir, un sistema de traslado v referencia de cuerpos que
impide qua una onda de sonido se propague. Asi, pues, los murciélagos en
pleno vuelo emiten sonidos de muy baja frecuencia que chocan con los
cuerpos y se devuelve hasta ellos para demarcar la ubicacion de objetos
como la presa. La eco-localizacion en los murciélagos es, por tanto, como una
especie de radar que les impide chocar contra arboles v rocas en la
naturaleza porque los murciélagos, a pesar de tener ojos como todo
mamifero, no pueden ver.

Bats have fascinating characteristics related to their genetics, lifestyle and
survival skills. In relation to genetics, all existing bat species belong to the
animal kingdom of mammals with the essential characteristic that they can fly.
About their lifestyle it can be said that they are sleeping animals suspended-
head down-from the branches of the frees or they can also be found in the
ledges of the stones in some cave. Among the well-documented variety of bat
species, the so-called insect-eating bats are surprising. Insect-eating bats feed
on pests that damage crops and make farm animals sick. As for the survival
skills of bats It is amazing the ability to hear the walking of insects or the flap of
those with wings. But the greatest of the skills is the eco-localization system,
that is to say, a system of transfer and reference of bodies that prevents a
sound wave from spreading. Thus, bats in mid-flight emit very low-frequency
sounds that collide with the bodies and are retumned to them to demarcate the
location of objects such as prey. The eco-localization in bats is, therefore, a
kind of radar that prevents them from colliding with trees and rocks in nature
because bats, despite having eyes like all mammals, cannot see.

Test Word
Text Mo Text
murciélagos ledn
reino montafia
cueva cielo
piedras mar
mamiferos volcan
ojos avion
sonidos presidente
alas ciudad
sistema lapiz
destrezas tren
genética maotor
especie pared
rocas pizza
arboles almohada
naturaleza cuadermo
bats lions
kingdom mountains
cave heaven
stones sea
mammals volcano
eyes aircraft
sound president
wings city
system pencils
skills train
genetics motor
species wall
rocks pizza
frees pillow
nature notebook
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Appendix B.

Sample Passage (and Test Words) with Argumentative Rhetorical Structure and with
Predominant Hypotactic Organization

Text Test Word

Text No Text
Actualmente, la cirugia cosmética se presenta como un procedimiento cirugia auto
quirdrgico facil, indoloro v sin riesgo alguno gue lamentar para la salud de procedimiento casa
hombres y mujeres. Asi, pues, resulta muy comun asociar la cirugia salud perro
cosmética con procedimientos basicos tales como: el refrescamignto facial, hombras biciclata
los masajes modeladores de la figura, o el tatuaje de cejas, ojos vy labios. Sin mujeres lentes
embargo, los riesgos que conlleva una cirugia cosmética incluyen reacciones Senos disco
adversas a la anestesia, los sangrados excesivos y las infecciones pacientes cinta
posquirdrgicas. Misculos vy nervios podrian dafarse durante la cirugia; por amigos manzana
tanto, elfla paciente estaria en riesgo de sufrir pardlisis. También existe la persona cable
posibilidad de que el propio cuerpo rechace el implante (por ejemplo, una resultado faza
protesis mamaria o de gluteos) que ha sido colocade en la cirugia. Aun si el musculo sopa
paciente s& recupera satisfactoriamente de la cirugia, existe el rizsgo de figura came
obtener resultados poco gratificantes. En dichos casos, es muy probable que implante pan
cirugias adicionales sean requeridas para corregir algin cambio corporal no pratesis pantalla
deseado. Finalmente, un resultado razonablemente exitoso de la cirugia labios zapato
cosmética podria, inclusive, incitar a la persona a realizarse mas operaciones
cosméticas por el refuerzo positivo recibido de verse bien. Pero lo cierto es
fue una cirugia cosmeética de nariz mas perfilada de lo normal o &l
agrandamiento de mamas u otro miembro corporal no asegura la felicidad, los
buenos amigos, ni el amor verdadero
Currently, cosmetic surgery is presented as an easy, painless and no-risk surgery car
surgical procadure to lament for the health of men and women. Therefore, it is procedure house
very common to associate cosmetic surgery with basic procedures such as: health dog
facial refreshing, shaping massages of the figure, or the tattoo of eyebrows, men bicycle
eyes and lips. However, the risks involved in cosmetic surgery include adverse Women glasses
reactions to anesthesia, excessive bleeding and post-surgical infections. breast disc
muscles and nerves may be damaged during surgery; Therefore, the patient patient ribbon
would be at risk for paralysis. There is also the possibility that the body itself friends apple
will reject the implant (for example, a breast or buttocks prosthesis) that has person cable
been placed in the surgery. Even if the patient recavers satisfactorily from results cup
surgery, there is a risk of getting unrewarding results. In such cases, additional muscles soup
surgeries are likely to be required to correct any unwanted body change. figure meat
Finally, a reasonably successful result of cosmetic surgery could even incite implant bread
the parson to perform more cosmefic operations by the posifive reinforcemeant prosthesis screen
received from being good. But the truth is that a more profiled nose cosmetic lips shoe

surgery than normal or breast enlargement or another body member does not
ensure happiness, good friends, or true love.




