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Abstract: In this paper, we provide a mental-chronometry measurement (reaction time, RT) 

and a mathematical model to support the hypothesis that writing increases long-term 

memory (LTM) consolidation. Twenty-five subjects read short passages, wrote or spoke 

summaries of the texts, and performed a word-recognition episodic memory task. In the 

recognition task, participants responded faster in the written condition than in the spoken 

condition. We fit 15 drift-diffusion models to the accuracy and RT data to explore which 

components of the memory retrieval process reflect the learning effect of writing. Model 

selection methods showed that the nondecision parameter accounts for this effect, 

suggesting that initial stages of learning through writing are associated with fast episodic-

memory retrieval. We suggest that the current approach could be used as a tool to compare 

different models of writing to learn. Furthermore, we show how combining mental 

chronometry, evidence-accumulation models of behavioral data, and dynamic causal models 

of functional magnetic resonance imaging could further the goal of understanding how 

writing affects learning. With a broader perspective, this approach provides a feasible 

experimental link between the field of writing to learn and the cognitive neurosciences. 
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1. Introduction 

Many fields related to psychology, education, and linguistics accept that writing 

plays a prominent role in both academic achievement and professional success. In 

the 1970s, researchers in both scholarly and college writing began to consider 

written productions as an essential part of the learning process (Britton, 1980; 

Britton, Burgess, Martin, McLeod, & Rosen, 1975; Emig, 1977). These studies began 

with the Bullock report (Bullock, 1975) in Great Britain and were regarded as “a 

movement”. This movement was first collectively referred to as “language across 

the curriculum” and later as “writing across the curriculum” (WAC) (Britton et al., 

1975). The WAC movement expanded to the U.S and Canada (Thaiss & Porter, 

2010), and later to Latin America (Navarro et al., 2016). As we detail below, all these 

works gave rise to more systematic inquiries about the effects of written 

productions on learning, suggesting that writing entails complex cognitive 

operations oriented by social and discursive goals (Bangert-Drowns, Hurley, & 

Wilkinson, 2004; Bazerman, 2018; Klein & Boscolo, 2016; Plane et al., 2017). 

Since the 1980s, two perspectives about writing have been respectively studied 

by comparable research programs: WAC and writing in the disciplines (WID) 

(Bazerman et al., 2005; Carter, Ferzli, & Wiebe, 2007; Klein & Boscolo, 2016; 

McLeod, Miraglia, Soven, & Thaiss, 2001). Both the WAC and the WID movements 

have been largely influenced by cognitive (McCutchen, Teske, & Bankston, 2008) 

and rhetorical studies (Bazerman, 2018; Miller, 1984; Russell, 2002). Furthermore, 

both movements currently influence the curricula in disciplines such as 

psychology (Nevid, Ambrose, & Pyun, 2017), biology (Mynlieff, Manogaran, St. 

Maurice, & Eddinger, 2014), linguistics (Petrucci, 2002), history (Martínez, Mateos, 

Martín, & Rijlaarsdam, 2015), neuroscience (Prichard, 2005), pedagogy (Mateos, 

Martin, Villalon, & Luna, 2008), and second language acquisition (Al-Murtadha, 

2013). 

Writing helps students to both acquire disciplinary concepts (i.e., writing to 

learn) and socialize disciplinary knowledge via discipline-specific genre (i.e., 

learning to write) (A. Young, 2006). However, research in writing to learn differs 

from research in learning to write. Specifically, research in writing to learn focuses 

on the cognitive processes that makes writing itself a learning activity (Klein & 

Boscolo, 2016; McCutchen et al., 2008). Crucially, as a unique human characteristic, 

writing has an epistemic property because it serves learning, self-reflection, and 

knowledge acquisition (Brown, 1998). Interestingly, this property is closely related 

to the notion of epistemic action, embraced by current Bayesian frameworks of 

brain function such as predictive coding and active inference (Parr & Friston, 2017; 

Pezzulo, Cartoni, Rigoli, Pio-Lopez, & Friston, 2016). An epistemic action allows us 

to gain information, reduce uncertainty, and boost curiosity. Therefore, because 
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epistemic is at the heart of writing as an action, we could refer to writing to learn 

as “epistemic writing”.  

It is uncontested that writing enhances learning. However, the questions of 

how it happens and how we could measure the learning effects from an 

experimental perspective remain open (Ackerman, 1993; Arnold et al., 2017; Klein, 

1999). Furthermore, in the educational field there is an increasing interest in 

investigating how the knowledge about the neural basis of learning furthers the 

educational goal of improving teaching strategies. Naturally, knowing the neural 

mechanisms underlying the effects of writing on cognition would benefit the field 

of “neuroscience and education”. However, this is an effort that demands 

rigorous conceptual and methodological links between education, psychology, 

and neuroscience (Bowers, 2016; Howard-Jones et al., 2016).  

Based on the above and from the cognitive science perspective of levels of 

analysis proposed by Marr (1982), we have three agendas in the current work: 

substantiating conceptually and experimentally the thesis that the description of 

the effects of writing on learning should consider long-term memory (LTM) 

processes, advancing a formal model of the mechanism that underlies LTM 

consolidation during writing, and providing an experimental link between the 

field of writing to learn and the cognitive neurosciences. We start by describing 

the facts that make our case that mental-chronometry measurements (i.e., reaction 

time, RT) reveal the effects of writing on learning in terms of LTM consolidation. 

We then report the strategy we performed to evaluate the hypothesis that writing 

decreases the RT of LTM retrieval. We also explored, the specific component(s) of 

memory retrieval affected by writing. We pursued this by using evidence 

accumulation models of accuracy and RT. Finally, in the discussion section we 

establish the relationship between the proposed experimental paradigm, the 

current findings, and the cognitive neurosciences in terms of a link between the 

cognitive processes that subjects would deploy when they learn during writing 

activities and the underlying neural mechanisms. 

2. Writing Facilitates LTM Consolidation 

Klein (1999) proposes four hypotheses that could explain how writing affects 

learning: shaping at the point of utterance, genre, backward search, and forward 

search. The first hypothesis “shaping at the point of utterance” (Britton, 1980) 

states that writers produce texts by “writing down the speech” in terms of free 

associations of utterances. Specifically, both speakers and writers transform 

implicit knowledge into explicit knowledge during syntactic and semantic 

selection through propositional association. Put simply, this hypothesis assumes 

that retrieving one piece of information activates related concepts — which from a 

cognitive perspective is reminiscent to the spreading activation theory of semantic 

processing (Collins & Loftus, 1975).  
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The genre hypothesis states that writing enhances learning if writers follow an 

a-priori structure (i.e., genre) defined by specific relations among constituent 

parts. Consider a task in which students read a text and perform a writing activity. 

Following, they are asked to recall (c.f., LTM retrieval) as much information as 

possible about the source text (i.e., a free-association posttest). Essay-writing tasks 

lead to better recall of the source-text’s content than non-essay writing activities 

such as note taking and question-answering tasks (Langer & Applebee, 1987). 

The backward search hypothesis (Bereiter & Scardamalia, 1987; Flower & 

Hayes, 1980, 1981) says that rhetorical constraints drive writing. Writers set goals, 

plan, write a content, and revise both goals and content. It is especially relevant 

the dual-problem space model proposed by Bereiter and Scardamalia (1987). In 

this model, writing leads to learning so long as the writer - in pursuing rhetorical 

goals - elaborates on retrieved information from LTM. Specifically, this model 

claims that learning, regarded as discovery, is a consequence of an interaction 

between a content space (the writer's beliefs stored in LTM) and a rhetorical space 

(the writer's representation of actual or intended text in terms of its rhetorical 

function). In the dual-space model novice writers tend to just retrieve information 

from the content space and "translate" it into text, i.e. knowledge-telling. More 

expert writers search and evaluate potential content in terms of rhetorical goals 

(represented in a rhetorical space), and knowledge transforming is a consequence 

of retrieving different material from LTM. At present, most of the writing-to-learn 

research invokes the dual-problem space model in motivating the writing-to-learn 

activities that they use (Klein, Haug, & Arcon, 2017) and to propose new models 

(Baaijen & Galbraith, 2018). 

Finally, the forward search hypothesis says that writers revise texts iteratively 

aiming to find and resolve contradictions via inferential processes (R. Young & 

Sullivan, 1984). An exemplar case of this hypothesis is the proposal of discovery 

through writing described by the dual-process model (DPM) (Galbraith, 2009; 

Galbraith & Baaijen, 2015; Galbraith & Torrance, 1999). The DPM regards learning 

through writing as the effect of two processes on ideas activated in episodic LTM 

and ideas activated in semantic LTM. In one process, a dispositionally-guided 

process, writers produce texts by activating semantic content in LTM. It involves 

an initial synthesis within a distributed (i.e., connectionist) representation of 

content activated by the writing task specifications, followed by feedback from 

this initial output to the representation, leading to further syntheses. In another 

process, a knowledge-transforming process, writers operate over ideas stored in 

episodic memory. These ideas could be either those generated in the 

dispositionally-guided process or ideas already stored in episodic memory (e.g., 

ideas recently read in a text). 

The analysis proposed by Klein (1999) remarks that the four hypotheses about 

how writing would affect learning relate to each other. For example, the forward 

hypothesis seems to be the natural evolution of the “shaping at the point of 
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utterance” hypothesis. Similarly, from our point of view, we regard the dual-space 

model as a special case of the more general DPM.  

We find the relationship between models of writing to learn not surprising for 

two reasons. First, as we detail below, in terms of Marr’s levels of analysis (Marr, 

1982) all of the models partially (the DPM) or totally fall in the algorithmic level. 

Second, at this level, all of the models rely directly or indirectly on a classical 

cognitive architecture with production systems operating on symbols retrieved 

from LTM. From this perspective, learning is strongly associated with LTM 

consolidation of novel categories or schemas (De Brigard, Brady, Ruzic, & 

Schacter, 2017). In what follows, we elaborate on these two points. Furthermore, 

within the specific case of the DPM, we reveal a gap in the field (lack of mental-

chronometry measurements) and argue that filling this gap is necessary for the 

identification of the underlying measurable mechanism of the effect of writing on 

learning.  

3. Models of writing to learn and Marr’s levels of analysis. 

Marr (1982) proposed that a cognitive system could be studied at three levels: 

computational (what the system’s goal is –for example, creating/acquiring new 

knowledge through writing), algorithmic (the set and order of operations the 

system deploys on representations so that to achieve the computational goals —

e.g., retrieving representations from LTM, transforming those representations in 

working memory, and creating the motor plan to be deployed during writing), and 

implementational (the physical realization of the operations –e.g., interaction 

between brain regions or the flow of information between the CPU and the hard 

disk of a computer). At present, Marr’s levels of analysis prevail over other 

approaches in the cognitive-psychology literature (Peebles & Cooper, 2015).  

At the algorithmic level of analysis, the cognitive-psychology field agrees that 

subjects achieve LTM consolidation1 of new representations via two (non-

orthogonal) operations: rehearsal and elaborative rehearsal (Tulving & Craik, 

2000). Based on this assumption, we argue that current models of writing-to-learn 

fall within the algorithmic level because they propose cognitive processes that 

comprise rehearsal or elaborative rehearsal of retrieved information from LTM. 

For example, in the dual-space model the evaluation of information in the context 

of rhetorical goals demands active maintenance of both the retrieved information 

and the rhetorical goals in working memory, this can be achieved only via 

rehearsal operations. Similarly, knowledge transforming is a special case of 

elaborative rehearsal of the retrieved content.  

A more recent example of the “algorithmic core” of current models of writing 

to learn is the DPM which assumes that new ideas or discoveries (c.f., learning) 

emerge from transient changes in neuron-like units via “mutual constraint 

satisfaction”. Crucially, Baaijen and Galbraith (2018) regard mutual constraint as a 
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different (i.e., sub-symbolic) mechanism to access information in LTM. However, 

based on a different read of the literature, we think that this mechanism is indeed 

the implementation of the retrieval processes described in symbolic frameworks 

(O'Reilly, Munakata, Frank, Hazy, & Contributors, 2012). As we argue below, the 

neural substantiation of the DPM speaks to the implementation of the two main 

algorithmic processes (i.e., knowledge-transforming and dispositionally-guided 

processes).  

3.1 Linking the algorithmic and implementational levels of analysis 

The initial proposal of levels of analysis in cognitive science (Marr, 1982) gave rise 

to self-contained algorithmic models of cognition and, by extension, models of 

writing to learn (e.g., the dual-space model). However, there is an increasing 

consensus in cognitive science that models of cognition and learning should also 

be explained at the neural level (Peebles & Cooper, 2015). In Marrian terms, this 

implies linking the algorithmic and implementational levels of analysis. In the field 

of writing to learn, at present, only the DPM (Baaijen & Galbraith, 2018; Galbraith, 

1992, 2009; Galbraith & Baaijen, 2015; Galbraith & Torrance, 1999) suggests such a 

link by relying on the assumptions of the complementary learning system (CLS) 

(O'Reilly, Bhattacharyya, Howard, & Ketz, 2014; Schapiro, Turk-Browne, Botvinick, 

& Norman, 2017) —which is one of the most accepted learning models in the 

computational cognitive neuroscience literature. 
In the CLS, learning new knowledge or LTM consolidation takes place in two 

different yet complementary ways which in the current version of the CLS 

(Schapiro et al., 2017) are assumed to be at the implementational level of analysis. 

First, single experienced events or episodes are quickly encoded in independent 

representations. In this phase, contextual (i.e., episodic) information strongly 

modulates changes in synaptic weights (i.e., connections) between neurons of the 

hippocampus. These implementational operations would take place during the 

knowledge-transforming process. Second, overlapping representations of single 

episodes give rise to abstract (i.e., semantic) patterns. This second phase demands 

many independent episodes and is reflected in changes of synaptic weights 

between cortical neurons. These second set of implementational operations 

would underlie the dispositionally-guided text production process. 

To summarize, processes described in current models of writing to learn fall 

within the algorithmic level of analysis. A clear exception is the DPM in which 

dispositionally-guided text production and problem-solving are special cases 

(algorithms) of elaborative rehearsal that are thought to be neurally (sub-

symbolically) implemented via the CLS. In what follows, we provide the 

conceptual and experimental support to the thesis that “mental chronometry” 

measurements (i.e., RT) are necessary to identify a mechanistic explanation of the 

effect of writing on learning at the algorithmic level of analysis. 
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3.2 The mental chronometry of the effect of writing on LTM consolidation 

As we suggested above, writing-to-learn models speak to LTM consolidation as an 

important effect of writing on learning. Clearly, research in writing to learn relies 

on response accuracy (e.g., how well subjects recall the content of a source text 

after performing a writing activity) as an index of LTM consolidation. However, it is 

surprising that whereas in cognitive psychology and cognitive neuroscience 

(including the CLS model)  the mental operations that give rise to LTM 

consolidation have been studied using not only response accuracy but also RT, 

the writing-to-learn field has not provided this mental-chronometry measurement 

as evidence of the effects of writing upon learning. This is especially relevant in 

the case of the DPM. Achieving a CLS-grounded DPM of writing to learn requires 

identifying a quantitative relationship between behavioral and neurophysiological 

measurements. Whereas the neurophysiological measurements should capture 

changes in the connectivity strength between neurons of the hippocampus and 

the neocortex, the RT measurement should capture the differential effects of 

dispositionally-guided and problem-solving processes on LTM consolidation. 

More in general, none of the current research trends in the field acknowledge the 

importance and necessity of this measurement. This is evident not only in the 

writing-to-learn literature (Klein & Boscolo, 2016) but also in the general research 

areas of academic and non-academic writing (Bazerman, 2018; Plane et al., 2017). 

We think that this is an important gap in the field. Filling this gap could further the 

goal of both resolving how writing leads to learning (i.e., comparing competing 

algorithmic models of writing to learn) and, more importantly, identifying the 

writing-to-learn mechanism at the implementational level of analysis —the neural 

level. 

3.3 Measuring LTM consolidation 

One way to measure LTM consolidation is computing how fast the cognitive 

systems retrieves stored information. This is frequently regarded as the latency 

from a stimulus presentation (e.g., a word in a text) to the activation of its 

schematic representation (e.g., the word’s meaning) in LTM. In the laboratory, this 

latency has been used to study the relationship between the speed with which 

readers recognize a word —referred to as lexical access— word-to-text 

integration, and the ensuing text comprehension (Perfetti, 1985, 2007; Perfetti & 

Lesley, 2002; Perfetti & Stafura, 2014; Stafura & Perfetti, 2014; Taylor & Perfetti, 

2016). Based on these facts, if writing features learning as a hallmark then it should 

decrease word-recognition time as an index of LTM consolidation. Furthermore, 

this effect should be observed at the level of the stages comprised in the word-

recognition (retrieval) process. In the remainder of this introduction, we sketch 

the general strategy we used to test our hypothesis and to identify the affected 

stage of the retrieval process. 
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4. Experimental approach 

We implemented a simple experimental paradigm in which participants read short 

passages, wrote or spoke a summary with the main idea of the passage, and 

performed an episodic-memory word recognition task. We decided to use spoken 

productions as a baseline condition because comparing production modalities 

could reveal subtle writing-specific effects (Cohen-Goldberg, 2017). Specifically, 

we needed to control for the effect of “language production”. This is because 

language itself mediates learning (Langacker, 2008). In concrete, we hypothesize 

that writing should decrease the RT in the recognition task (compared with the 

effect of spoken productions) as an index of LTM consolidation.  

Neuropsychological, computational, and animal-learning data show that 

episodic cues facilitate recognition processes (Craik & Tulving, 1975) (Lepage, 

Habib, & Tulving, 1998; Tulving, 1972, 1983). In addition, recent findings suggest 

that episodic memory facilitates the reactivation of the situation model associated 

with a written text (Johansson, Oren, & Holmqvist, 2018), which speaks to episodic 

memory as an index of text comprehension and learning. In neurophysiological 

terms, episodic memory influences the (cortical) consolidation of semantic 

memory, via activity of the hippocampus (Ketz, Morkonda, & O'Reilly, 2013; 

O'Reilly et al., 2014; O'Reilly & Norman, 2002; Schapiro et al., 2017). Therefore, in 

the context of a writing-to-learn activity we suggest that an initial behavioral effect 

of writing on word-recognition processes takes place at the level of episodic 

memory, specifically in the ability to discriminate whether a word has been 

recently read. 

To explore and identify the specific stage(s) of the retrieval process that is 

affected by learning through writing, we fit drift-diffusion models to data collected 

in the episodic-memory word recognition task. Recently, lexical access has been 

regarded as an evidence-accumulation process (Anders, Riès, van Maanen, & 

Alario, 2015) - a family of decision-making models that fall at the algorithmic level 

of analysis. One of the most influential evidence-accumulation models of lexical 

access is the Ratcliff's drift-diffusion model (Ratcliff, 1978; Ratcliff, Gomez, & 

McKoon, 2004) which pertains to a large family of models of fast (i.e., at a 

millisecond scale) two-alternative forced choice (2AFC) decision-making tasks 

(Forstmann, Ratcliff, & Wagenmakers, 2016; Ratcliff, Smith, Brown, & McKoon, 

2016).  

Understanding the dynamics of the drift-diffusion model is straightforward. 

Consider the RT distribution collected from a subject that performed an episodic-

memory task in which he or she responded as quickly and as accurately as 

possible whether a test word appeared in a previously read passage. In this model, 

the subject accumulates information until reaching a threshold. After reaching this 

threshold, the subject executes a response.  

Formally, the model comprises four basic parameters (Figure 1) representing 

the accumulation threshold (a), the starting point of the accumulation process (z), 
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the accumulation (or drift) rate (v), and the nondecision processes (t) such as 

stimulus encoding and motor execution (i.e., sensorimotor delay). Parameters 

representing the intertrial variability of the drift rate (sv), starting point (sz), and 

nondecision processes (st) are also included. In the field of language processing, 

previous works have reported the effects of experimental manipulations and 

populations on these parameters. For example, the word-frequency effect on 

lexical access is captured by the drift rate (Ratcliff, Gomez, et al., 2004) whereas the 

effect of age on episodic LTM retrieval is capture by the nondecision parameter 

(Spaniol, Madden, & Voss, 2006). In the current work, we expect that the effect of 

writing on LTM consolidation will be captured by one or more parameters of the 

drift-diffusion model. 

 

Figure 1. Basic Formulation of an Evidence-accumulation Model. The basic model comprises 

four parameters: decision threshold (a), starting point (z), drift rate (v), and nondecision time 

(t). 

5. Materials and Methods 

5.1 Participants 

In this study, 25 university students (22 females, M age = 20.59, SD = 2.37) from 

Pontifical Catholic University of Valparaíso were recruited via campus and class 

advertisements. They voluntarily participated in the experiment, signed informed 

consent forms, and received course credit as compensation. The study was 

approved by the Institutional Review Board of the Pedagogical Institute of Caracas 

as part of a larger project (Silva, 2016). Participants spoke Spanish as L1. 
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5.2 Procedure 

Participants began the experiment by putting on a head set and reading the 

general instructions on a computer screen. They performed one familiarization 

block followed by eight experimental blocks with two conditions (spoken and 

written, Figure 2). Each condition comprised four blocks, and each block included 

reading, production, and memory tasks —executed in this order. In the reading 

task, participants read and summarized (mentally and silently) short passages 

(Mwords = 203, SD = 37.67; Msentences = 9.37, SD = 3.29). In the production task, they 

wrote or spoke a summary of the passage. Participants were informed about the 

linguistic production modality just at the beginning of the production task. In the 

memory task, participants performed an episodic-memory recognition task with 

text and no-text words. They had to decide as  

Figure 2. Experimental Paradigm. 

quickly and as accurately as possible whether or not the test word appeared in the 

passage. In total, there were 60 text and 60 no-text words per condition. After 

finishing the memory task, a new block began. The stimulus delivery program was 

E-prime 2.0 (Schneider, Eschman, & Zuccolotto, 2012). Below, we describe each 

task in detail. 

Reading task 
The reading task began with a text window depicting a passage that included a 

title at the top of it. The whole passage was visible on the screen during 2 min. On 

the top right corner of the screen, a timer showed the remaining time. Each 
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passage was selected randomly (without replacement) from a pool of eight texts. 

The rhetorical structure of four texts was argumentative and with predominant 

hypotactic organization whereas the rhetorical structure of the other four texts 

was expositive and with predominant paratactic organization. We provide 

examples of each type of text in appendices A and B. A given passage could 

appear in any modality across participants. During this task, participants were not 

allowed to take notes. After the 2-minute reading time, the text window 

disappeared. 

Production task 
The production task began with an instruction window. Depending upon the 

linguistic production condition, participants heard or read that they had to 

pronounce or write a summary with the main idea of the passage. In the spoken 

condition, participants heard an instruction asking to pronounce the summary of 

the passage after hearing a tone. During the duration of the instruction window, a 

cartoon depicting a woman wearing a head set was displayed. In the written 

condition, participants read an instruction on the center of the screen asking to 

type the summary when a textbox appeared. The instruction window lasted 11 s. 

When this time elapsed, the instruction (or cartoon) disappeared and a 

production window appeared.  

The production window lasted 90 s, a timer on the top right corner of the 

screen showed the remaining time. In the spoken condition, a cartoon depicting a 

microphone appeared on the center of the screen with the following instruction 

below “ahora pronuncia la idea central del texto” (now say the main idea of the 

passage). In the written condition, a textbox appeared on the center of the screen 

with the following instruction below “ahora escribe la idea central del texto” (now 

write the main idea of the passage). For a summary to be considered valid, 

participants had to produce at least two sentences. Grammar and linguistic style 

were not considered as a correct-response criterion. We informed participants on 

these conditions during the general instructions and the familiarization block. 

Memory task 
In the memory task, we instructed participants to respond as quickly and as 

accurate as possible if the test word appeared in the passage they read and 

summarized. On the computer keyboard, participants pressed the “k” key for 

“yes” responses and the “l” key for “no” responses. A word was shown in the 

middle of the screen and remained visible until a response was detected or until 

2500 ms had elapsed. In a single block, the task comprised 15 texts and 15 no-text 

words. Text words were noun words extracted from the passage and were passage 

specific. This is, they appeared only one time in the experiment. No-text words 

were chosen randomly (without replacement across the experiment) from a pool 
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of 120 words selected from Current Spanish Reference Corpus (Real Academia 

Española). A new test word appeared immediately after the termination of a trial. 

We provide examples of the source text, text and no-text words in appendices A 

and B. 

5.3 Data Analysis 

We performed two analyses of the memory-task data using Bayesian statistics. 

Bayesian statistics is now a common method in psychological sciences 

(Appelbaum et al., 2018) and represents a response to the call for a “new statistics” 

in terms of a shift from the frequentist null hypothesis significance testing to 

estimation of magnitudes with uncertainties (Kruschke & Liddell, 2017a, 2017b). 

Therefore, we performed estimations with quantified uncertainties of the 

parameters of interest.  

In the first analysis, we computed the posterior distribution over mean RT 

differences of correct and incorrect responses between conditions. For 

completeness, we also computed mean RT differences between correct and 

incorrect responses within conditions. The mu (μ) parameter represented the 

estimated mean difference. We analyzed correct and incorrect responses 

separately. Participants’ responses were coded as “correct” or “incorrect” 

depending upon whether they matched the expected responses. This is, “yes” 

responses were expected for text words whereas “no” responses were expected 

for no-text words. 

Prior distributions were informative. To estimate posterior distributions of 

parameters we used Markov chain Monte Carlo (MCMC) methods. The chain 

length (i.e., the MCMC sample size) was 100,000. The number of burn-in iterations 

was 1000, and the chains were generated with no thinning. We assessed 

convergence by computing the R-hat (R ̂) statistic (Gelman & Rubin, 1992). We 

report the estimate and the posterior 95 % highest density interval (HDI) which 

indicates the most probable parameter value given the data. As a decision rule, we 

accepted a difference in mean RT if the 95 % HDI comprising the mean of the 

most credible values for μ fell below 0. The analysis was implemented in R and 

JAGS (Kruschke, 2013a). 

In the second analysis, we fit 15 Bayesian hierarchical drift-diffusion models 

(HDDM) to the distributions of RT and accuracy data (Wiecki, Sofer, & Frank, 

2013). Hierarchical Bayesian methods allow to estimate both subjects and group 

parameters simultaneously. We explored all possible combinations of “a”, “z”, 

“v”, and “t” as free parameters (Table 1). Furthermore, intertrial variability of z, v, 

and t (“sz”, “sv”, and “st”) was estimated in every model. Prior distributions were 

informative. The chain length of each model was 5,000. The number of burn-in 

iterations was 250, and the chains were generated with no thinning. 
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Table 1. Model Space and Results of the HDDMs 

Model 
Parameters 

   DIC R̂ 
Free Fixed 

M1 a v, z, t 5036.68 ― 

M2 v a, z, t 5037.41 ― 

M3 z a, v, t 5035.99 ― 

M4 t a, v, z 5027.61 1 

M5 a, v z, t 5037.84 ― 

M6 a, z v, t 5037.20 ― 

M7 a, t v, z 5028.84 ― 

M8 v, z a, t 5038.77 ― 

M9 v, t a, z 5031.14 ― 

M10 z, t a, v 5029.41 ― 

M11 a, v, z t 5038.40 ― 

M12 a, v, t z 5030.45 ― 

M13 v, z, t a 5032.08 ― 

M14 a, z, t v 5031.76 ― 

M15 a, v, z, t ― 5033.66 ― 

Note. R̂ statistic was computed only for the winning model. DIC (deviance information 

criterion). 

To select the winning model, we used the deviance information criterion (DIC) 

number as an approximation to Bayesian model evidence. At a group level, we 

report the parameter estimates of the winning model. For every parameter of 

interest, we report the percentage of the posterior estimates (i.e., the posterior 

proportion, PP) that differs from 0. We also report subject-wise parameter 

estimates. We assessed convergence by computing the R ̂ statistic. Goodness of fit 

was assessed via posterior predictive checks (Kruschke, 2013b). 

6. Results 

Trials with either RT > 2000 ms (1.3 %) or RT < 200 ms (1.1 %) were excluded from 

the analyses. Table 2 shows the relevant descriptive statistics. 

6.1 Differences in Accuracy and RT 

The first analysis revealed that response accuracy did not differ across conditions, 

μ = - 0.006, PP = .6 (Figure 3). However, on correct trials participants responded 

faster in the written condition than in the spoken condition, μ = - 0.02, PP = .951. 
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RTs of incorrect responses did not differ across conditions, μ = 0.008, PP = .333. 

However, correct responses were slower than incorrect responses in both the 

spoken μ = 0.119, PP = 1 and the written μ = 0.132, PP = 1 conditions (Figure 4). 

Table 2. Summary Statistics of Variables of Interest 

Condition Response Dependent Variable Mean SD 

Spoken 

 
Accuracy (%) 81.4 4.16 

Correct 
RT (ms) 

870 292 

Incorrect 971 333 

Written 

 
Accuracy (%) 80.5 7.9 

Correct 
RT (ms) 

851 279 

Incorrect 947 340 

 

 

 

 

 

Figure 3. Posterior Distributions of Parameter Estimates about Differences in RT between 

Conditions. Correct responses were faster in the written condition whereas no difference  

was detected in incorrect responses. R̂ = 1 in all estimations.  
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Figure 4. Posterior Distributions of Parameter Estimates about Differences in RT  

within Conditions. Incorrect responses were slower than correct responses  

in both conditions. R̂ = 1 in all estimations. 

Table 3. Parameter Estimates of the Winning HDDM (M4) 

Parameter 
a z v t(spoken) t(written) 

mean std mean std mean std mean std mean std 

Group 1.489 0.075 0.495 0.014 1.532 0.105 0.511 0.022 0.496 0.004 
Subject 1 1.586 0.066 0.497 0.027 1.172 0.157 0.518 0.011 0.502 0.015 
Subject 2 1.559 0.066 0.360 0.027 1.700 0.170 0.383 0.012 0.368 0.016 
Subject 3 1.407 0.070 0.523 0.027 1.589 0.184 0.534 0.017 0.519 0.021 
Subject 4 1.214 0.055 0.527 0.027 1.148 0.186 0.465 0.014 0.450 0.018 
Subject 5 1.613 0.079 0.493 0.027 1.571 0.165 0.543 0.016 0.528 0.020 
Subject 6 1.700 0.085 0.522 0.027 1.655 0.180 0.591 0.016 0.575 0.020 
Subject 7 1.645 0.074 0.495 0.027 1.450 0.163 0.499 0.011 0.484 0.015 
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Subject 8 1.474 0.080 0.570 0.027 1.589 0.193 0.663 0.019 0.648 0.023 
Subject 9 1.792 0.093 0.491 0.027 1.721 0.176 0.475 0.016 0.460 0.020 
Subject 10 1.011 0.051 0.554 0.027 1.684 0.218 0.647 0.013 0.631 0.017 
Subject 11 1.491 0.072 0.500 0.027 1.443 0.170 0.580 0.017 0.564 0.021 
Subject 12 0.956 0.047 0.527 0.027 1.643 0.210 0.525 0.012 0.509 0.016 
Subject 13 1.502 0.064 0.465 0.027 1.119 0.162 0.397 0.014 0.381 0.018 
Subject 14 1.528 0.073 0.513 0.027 1.275 0.168 0.564 0.019 0.548 0.023 
Subject 15 1.334 0.064 0.498 0.027 1.882 0.191 0.526 0.012 0.511 0.017 
Subject 16 1.234 0.060 0.539 0.027 1.510 0.186 0.561 0.015 0.546 0.019 
Subject 17 1.109 0.054 0.499 0.027 1.691 0.193 0.511 0.013 0.496 0.017 
Subject 18 1.350 0.065 0.565 0.027 1.589 0.187 0.653 0.014 0.637 0.019 
Subject 19 2.202 0.110 0.422 0.027 1.710 0.161 0.319 0.012 0.303 0.016 
Subject 20 1.785 0.079 0.413 0.027 1.818 0.177 0.404 0.009 0.389 0.013 
Subject 21 1.372 0.067 0.583 0.027 1.440 0.189 0.567 0.017 0.552 0.021 
Subject 22 1.365 0.062 0.524 0.027 1.143 0.177 0.556 0.016 0.540 0.020 
Subject 23 2.239 0.112 0.348 0.027 1.965 0.183 0.316 0.011 0.301 0.015 
Subject 24 1.447 0.062 0.427 0.027 1.215 0.161 0.444 0.016 0.428 0.020 
Subject 25 1.141 0.054 0.532 0.027 1.554 0.195 0.501 0.012 0.486 0.016 

Note. Intertrial variability of z (sz), v (sv), and t (st) were estimated only at a group level: sz = 

0.120, std =.06; sv = 1.161, std = 0.102; st = 0.244, std =.009. In every subject, the t parameter 

was smaller in the written condition than in the spoken condition. This suggests fixed effect 

at the level of the model structure and random effect at the parameter level. 

 

6.2 Evidence-accumulation Models 

Bayesian model comparison shows that the model comprising the nondecision 

time as free parameter performed better than the other models (Table 1). Table 3 

shows the parameter estimates at both group and subject levels. The nondecision 

time parameter was larger in the spoken condition than in the written condition 

(PPs = 1, Figure 5). Interestingly, we observed this effect not only at a group level 

but also in all subjects. Posterior predictive checks show that the model fairly 

reproduced the observed data (Table 4). 
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Table 4. Posterior Predictive Checks 

Statistic Observed Model generated SD SEM MSE Credible 

Accuracy 0.81 0.81 0.05 0.0003 0.003 True 

RT (Upper bound) 860 ms 882 ms 0.10 0.004 0.01 True 

RT (Lower bound) -959 ms -982 ms 0.17 0.0006 0.03 True 

Note. Observed and model-generated values are collapsed across conditions. Upper bound 

= correct responses, Lower bound = incorrect responses, SD = standard deviation, SEM = 

standard error of the mean, MSE = mean squared error, Credible (True) = in the 95% credible 

interval. 

6.3 Post-hoc Analysis 

As per suggestion of our reviewers and from a language production perspective 

(Margolin, 1984; Olive, 2014; Torrance et al., 2018), we performed a post-hoc 

analysis to evaluate two alternative explanations of why the written condition 

yielded fast RTs compared with the spoken condition. First, if the written 

summaries were longer or more detailed (e.g., with more propositional content) 

than the spoken summaries, then the inclusion of the target words in the 

summaries was perhaps more likely and could decrease the latency of the probe 

word in the recognition task. Second, it could be the case that the amount of time 

engaged in the summary task correlates with subsequent recognition accuracy 

and RT. If the effect persists after accounting for time on task, then it could 

indicate that writing enhances the consolidation of the words in LTM because of 

the knowledge-transforming process elicited through writing. If it does not 

persist, then the results may instead imply that writing merely engages the learner 

for a longer amount of time in thinking about the text without altering the 

qualitative nature of the learning process. To resolve these uncertainties, we first 

compared the quality of the summaries and the specific amount of time allocated 

to summary production within the 90 s window (time on task).  

From the perspective of the communicability theory (Parodi, 2011), we assumed 

that summary quality indexes propositional content and production length in 

terms of (0 – 4) rating scale (Silva, 2016) with the following criteria: (0) no 

production, (1) retrieval of just the main idea, (2) retrieval of the main-idea along 

with non-specific details, (3) retrieval of the main idea along with specific 

supporting details, and (4) retrieval of the main idea along with elaborative 

rehearsal (e.g., paraphrasis). Based on this scale, a production graded with “3” was 

longer than a production graded with “3” was longer than a production graded 

with “1”.  
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Figure 5. Accuracy and RT Histograms of Observed Responses, Visual Representation of the 

Winning Model, and Difference in Posterior Probabilities of “t” Estimates. The winning 

model was fitted to the distributions of RT and accuracy data of both conditions. The model 

reproduced these distributions (see also Table 4). Nondecision time increased in the spoken 

condition. The posterior distributions of “t” estimates do not overlap, meaning that they 

fairly differ. The 100% of posterior proportions (PP) differ from 0. The actual parameter value 

of the written condition is relative to the spoken condition (0.51 - 0.015).  

Likewise, a production graded with “4” had more propositional content than a 

production graded with “3”2. Time on task was logged automatically by the 

stimulus delivery program. 

Following, we fit four mixed-effects linear models to the RT data of correct 

trials. Model 1 comprised the main effect of production modality. Model 2 

comprised the main effect of summary quality, main effect of linguistic modality, 

and the Summary Quality × Production Modality interaction. Model 3 included the 

main effects of production modality, time on task, and the Production Modality × 

Time on Task interaction. We also fit a full model (model 4) comprising the main 

effects of production modality, summary quality, time on task, and all possible 

interactions. In all models, subjects were included as random effects. We relied on 

model comparison procedures to evaluate the post-hoc hypotheses, using the 

lowest AIC (Akaike information criterion) number as a decision rule for model 

selection. If any of the post-hoc hypotheses accounts for the differential effect on 

RT, the lowest AIC number would be associated to either model 2, 3, or 4. 
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The results of this post hoc analysis showed that the quality of the summaries 

was better in the written condition (M = 2.60, SD = 0.50) than in the spoken 

condition (M = 2.38, SD = 0.63); μ = 0.23, PP = .97 (Figure 6). Furthermore, 

participants took more time to produce a summary in the written condition (M = 

78.35 s, SD = 11.35 s than in the spoken condition (M = 34.15 s, SD = 11.9 s); μ = 44.2, 

PP = .999 (Figure 6). The results of the mixed-effects models showed that the 

simple model 1 outperformed all the other more complex models (AICmodel-1 = -

93.84, AICmodel-2 = -81.80, AICmodel-3 = -64.71, AICmodel-4 = -25.74). RT was longer in the 

spoken condition than in the written condition, β = .01, (SE = .007). 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Results of the Post-hoc Analysis. Posterior Distributions of Parameter Estimates  

about Differences in summary quality (A) and time on task (B) across conditions. 

7. Discussion 

We introduced a paradigm to measure the effects of writing on LTM at a 

millisecond scale. Participants read short passages, wrote or voiced a summary, 

and performed an episodic-memory word recognition task. After producing the 

summary, participants read words and decided as quickly as possible whether 

each word appeared in the passage. With this paradigm, we evaluated the 
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hypothesis that writing increases LTM consolidation (indexed by decreased word-

recognition time) and explored how a drift-diffusion model captured this effect. 

Bayesian estimation methods showed that written productions decreased the RT 

of correct responses, compared with spoken productions. This differential effect 

mapped onto the model’s nondecision parameter. Our results provide the first 

mental-chronometry evidence of the effect of writing on learning.  

The fact that incorrect responses were faster than correct responses 

constitutes a proof of concept of the use of speeded memory recognition task in 

the context of writing to learn. This is because in 2AFC decision making tasks 

incorrect responses are faster than correct responses (Ratcliff, 1985). Another 

proof of concept of the method is the fact that writing did not increase accuracy 

(compared with speaking) in the memory task. In practice, RT and accuracy are 

negatively correlated in 2AFC decision making tasks (Heitz, 2014). This causes the 

subjects to engage in a speed accuracy trade off. This is relevant for future works 

in writing to learn because the experimenter could manipulate this trade-off effect 

depending upon the research objective. For example, if one wants to observe the 

effect of production modality on accuracy rather than on RT we could increase 

experimentally the accuracy in the written condition. One could do this via 

condition-specific instructions. In the written condition, we could ask the subjects 

to pay more attention to the accuracy of the responses and “to take their time to 

respond”. In the spoken condition, we could ask them to respond both as 

accurately and as quickly as possible. Based on the expected speed-accuracy trade 

off we should expect higher accuracy, but longer RT, in the written condition than 

in the spoken condition. 

The HDDM results suggest that writing facilitates initial stages of learning by 

decreasing –via episodic cues– either the encoding phase of memory retrieval or 

the motor response. Heuristically, this explains why “when we write the summary 

of a text we tend to retrieve words that we believe were present in the text”. Note 

that adding the decision threshold (M7) or starting point (M10) as free parameters 

could have increased the goodness of fit of the model. However, DIC values 

suggest that this gain in fit would have been accompanied by a loss in 

generalizability, meaning that these more complex models would fit noise. 

A qualitative reading of these results is that to make a correct response about 

whether a test word was present or not in a passage, participants accumulated the 

same amount of evidence in both conditions, began accumulating evidence at the 

same starting point, and at the same rate. However, participants needed less time 

to perform nondecision processes (i.e., stimulus encoding and/or motor response) 

after writing a summary than after pronouncing the summary.  

7.1 Language production and memory retrieval: a specific writing effect 

In our paradigm, we found a specific differential effect of writing on episodic-

memory recognition using a spoken production as a control condition. The most 
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credible value of the effect size was Cohen’s d = - 0.39 –note that the negative sign 

only indicates the direction of the comparison. In a previous work (Arnold et al., 

2017), participants performed problem-solving tasks two days after performing 

learning activities that required retrieval (free recall and essay writing) and non-

retrieval (note taking and highlighting) processes. They found that (compared with 

highlighting) essay writing improved problem-solving performance –with an effect 

size of Cohen’s d = 0.44. Interestingly, Arnold et al. (2017) used a no-language 

production baseline. In the context of our results, we suggest that not accounting 

for the main effect of language production could cause a larger effect of writing 

because spoken productions increase learning more than no-language activities 

(MacLeod & Bodner, 2017). 

From a language production perspective (Margolin, 1984; Olive, 2014; Torrance 

et al., 2018), the post-hoc analysis showed that peripheral processes such as the 

physical act of forming the letters or encoding the letter sequence during spelling 

(i.e., the articulatory stage of language production) do not account for our 

findings. This speaks to central processes such as the planning or 

conceptualization phases as the loci of the differential effect of writing. One 

central process that could be responsible for this effect is memory retrieval. Trying 

to retrieve material from LTM following a period of initial study leads to better 

LTM consolidation than a further period of study for equivalent time (Karpicke & 

Roediger, 2008; Roediger & Butler, 2011). This suggests that "mere retrieval" - 
comprised, for example, in knowledge telling or dispositionally-guided text 

production - is sufficient to lead to learning.  

Interestingly, we find congruent the above fact with a previous work in which 

writing activities that demanded memory retrieval led to better results on learning 

than non-retrieval writing activities (e.g., note taking) (Arnold et al., 2017). 

However, our control (spoken) condition also demanded memory retrieval. If we 

assume the Donder’s subtraction method (Donders, 1969) - still prevalent in the 

mental-chronometry literature - the writing effect detected here should be 

associated with additional elaborative processes (i.e., elaborative rehearsal) per–

formed over the retrieved information. These processes might not take place in 

the spoken condition. It is worth noting however, that whereas the subtraction 

methods reveal processes that are unique to writing it does so by subtracting the 

effect of processes that are shared by both modalities.  

We speculate that reconstructive processes and text revision could be two 

writing-specific operations that facilitate LTM consolidation. When the writer 

attempts to summarize the text, he or she no longer has access to the source text 

but instead faces the uncertainty about how well the summary captures the 

meaning extracted from the text. At this point, there are two sources of 

uncertainty. The first source refers to how well the extracted meaning 

corresponds to the text whereas the second source refers to how well the 

summary text under construction captures the meaning of the text. With 
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reconstructive processes, the writer adds in plausible inferences about what the 

text must have said whereas with text revision the writer formulates new text to 

bring the emerging summary into line with their conceptual representation. 

Reading (i.e., revising) the externalized text then reduces the uncertainty. These 

processes sound very like the knowledge-constituting process (Galbraith & 

Torrance, 1999). An initial attempt to summarize conceptual content mismatches 

the underlying content so a new synthesis is generated to express the missing 

content, which in turn fails to fully capture the content, so a further synthesis 

takes place. The result is an explicit proposition or series of propositions in 

episodic memory. 

As revealed by the winning HDDM, the observable consequence of a specific 

effect of writing manifests itself at either the encoding phase or the motor 

response phase during the retrieval process of the word-recognition task. The 

nondecision parameter does not differentiate between these two phases. We 

found this very interesting because in emerging theories of brain function such as 

predictive coding and active inference (Parr & Friston, 2017; Pezzulo et al., 2016) 

encoding processes and motor responses are two different ways through which 

the organism establishes an equilibrium with the environment. In particular, from 

this perspective we have found that premature motor responses (i.e., actions) are 

strongly associated with “prior beliefs” (Limongi, Bohaterewicz, Nowicka, Plewka, 

& Friston, 2018) or consolidated LTM which in the context of the dual-process 

model is equivalent to the dispositionally-guided process. This conceptual 

relationship could result in a nice link between the field of writing to learn and 

emergent theories of brain function, which would regard writing to learn as a 

special case of epistemic behavior –epistemic writing. Therefore, a future study 

could adjudicate between these processes by manipulating experimentally, for 

example, the orientation of the probe words. This is because word orientation 

affects specifically the encoding phase (Gomez & Perea, 2014). 

7.2 Alternative explanation 

Although we controlled for the effect of language production by using a spoken 

condition, one could think of orthographic priming as an alternative explanation 

for the “writing effect” on RT. The rationale underlying this possible explanation is 

that spoken and written productions might comprise different cognitive (and 

neurocognitive) paths to access lexical knowledge (Cohen-Goldberg, 2017), 

lexical-semantics differences (Biber, 1988), and differences between written and 

spoken registers (Louwerse, McCarthy, McNamara, & Graesser, 2004). 

Unlike the spoken summary, the written summary involved orthographic 

representations. Given that the source text and the text/no-text test words were 

also orthographically represented, we could naturally think that general priming 

of orthographic representations in the written condition could have decreased the 

RT. However, a previous work on priming in “masked” and “unmasked” 
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conditions (Gomez, Perea, & Ratcliff, 2013) allows us to rule out this alternative 

explanation. Below, we do this by detailing the relationship between the 

differential effect of masked and un masked priming on HDDM parameters. 

Consider the priming effect of the word “book” on the recognition time of the 

word “library” in masked and unmasked conditions. A masked trial would 

comprise, for example, the following sequence: (1) a 500-ms mask (e.g., 

“********”) followed by (2) a 60-ms prime word (e.g., “book”), and then by (3) the 

probe word (e.g., “library”). In the unmasked trial, there is no mask, and the prime 

word would last 560 ms. In the masked condition, the subjects cannot detect the 

briefly presented (50 ms) prime word. However, the priming effect (faster 

recognition of the probe word) occurs. This reduction in RT is captured by the 

nondecision parameter whereas the priming effect in the unmasked condition is 

captured by the drift rate parameter. In the current task, if there had been a 

priming effect of orthographic representations on RT this effect would have 

mapped onto the drift-rate parameter because orthographic cues would play the 

role of unmasked primes. 

Despite our modeling argument, a future experiment could evaluate 

empirically the orthographic-priming explanation by including extra control 

conditions in which both the initial text and the recognition-memory stimuli are 

presented in auditory form. If the orthographic explanation for the writing 

superiority effect is valid, then writing should show no advantage over speech 

when input and output are auditory in form. By contrast, if the effect is a genuine 

writing superiority effect, the advantage should still be present when text and 

recognition cues are presented in auditory form3. 

7.3 Limitations 

The current experiment unveils a cause-effect relationship, which is what we 

could expect from a laboratory study. However, it is important to interpret our 

results in the context of real situations. In this task, subjects did not have access to 

the source text when they were composing the summary. This allowed us to 

capitalize on the effect of retrieval on learning. However, as highlighted by one of 

our reviewers, this is “probably atypical of writing to learn tasks” in the classroom. 

Writing is generally intermixed with reading, which makes writing to learn “a 

discourse synthesis task”. In the same line of arguments, the writing to learn 

literature has often included measures that are not merely recalled but require 

learners to draw new inferences or apply their knowledge to solve novel 

problems. Arguably, inference tasks are good measures of the higher level of 

learning that educators pursue with writing to learn activities. Interestingly, the 

outcome of inference tasks can also be studied using mental chronometry and 

computational models, being a tremendous tool for measurement purposes in 

education. 
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Another limitation of the current study is worth noticing. A major goal of our 

work was to make initial progress on the formal (i.e., mathematical) understanding 

of the effect of writing on learning. To achieve this, we opted to identify first - as 

we indeed did - the main effect of linguistic modality (i.e., writing vs. speaking). 

With this in mind, we fully randomized the stimuli across participants, conditions, 

and trials to control for a series of linguistic variables (e.g., word length and word 

frequency) that could affect the diffusion-model parameters (Aschenbrenner, 

Balota, Gordon, Ratcliff, & Morris, 2016; Ratcliff, Thapar, & McKoon, 2004). 

However, we assumed that such variables affected both conditions alike. Future 

works should experimentally evaluate this assumption. 

7.4 Towards a cognitive neuroscience of writing to learn: combining 
neuroimaging, computational, and mental-chronometry 

Our primary focus in what follows is detailing how the current paradigm could 

serve as a link between the description of writing-to-learn operations, the 

quantitative measurements of their ensuing effects, and their neural correlates. 

We think that a precise description of this link could further the goal of the most 

important claim of educational neuroscience, “…that new insights about the brain 

can improve classroom teaching” (Blakemore & Frith, 2005). As an exemplar case, 

we sketch how our approach and results could take the initiative comprised in the 

DPM one step further. Specifically, we could achieve a CLS-grounded DPM of 

writing to learn by combining the current methodology with dynamic causal 

models (DCM) of functional magnetic resonance imaging (fMRI) (Forstmann et al., 

2016; Friston, 2007). This combined strategy is a gold standard in cognitive 

neuroscience and is currently applied in studies ranging from basic perception 

and learning processes (Stephan & Friston, 2010) to neuropsychiatric disorders 

(Limongi et al., 2018). Therefore, it could be used straightforwardly to test the 

implementational predictions of the DPM. Naturally, this approach would inform 

current proposals of the relationship between neuroscience and education. 

Recall that the DPM assumes that writer’s disposition (i.e., knowledge 

constituting) leads to learning via recursive activation of semantic memory (in the 

cortex). Conversely, writing would lead to learning via problem-solving 

(knowledge-transforming) if it focuses on stable activations of episodic memories 

(in the hippocampus)4. The DPM makes predictions of these two cases during the 

first stages of LTM consolidation (during the first milliseconds after completing 

the writing activity) at both the algorithmic (drift-diffusion models) and 

implementational (dynamic causal models) levels of analysis. 

At the algorithmic level of analysis, the first case should impact the drift rate of 

the drift-diffusion model, because semantic activation during word recognition is 

associated with the quality of the encoded information (Ratcliff, Gomez, et al., 

2004). The second case, as this work reveals, implies changes in the nondecision 

parameter. Furthermore, the DPM proposes that optimal learning takes place via 
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conjoint deployment of both processes, which should map onto both the drift 

rate and the nondecision parameters. Interestingly, previous works have shown 

that low and high self-monitors tend to learn by deploying the dispositionally-

guided and problem-solving processes respectively (Baaijen & Galbraith, 2018). 

Note that knowledge constituting alone could affect the drift rate at later 

stages of LTM consolidation, but not during the first milliseconds after the 

production phase (i.e., the current experiment).  For example, if subjects worked 

on the same summary over and over, we would expect a stronger cortical 

participation, as an index of stronger LTM consolidation. This consolidation would 

map onto a change in the drift rate. We speculate that this could occur when a 

subject works on the same draft for several days. This might nicely explain why 

“putting away” a draft a few days before proofreading it allows the writer to detect 

errors. The draft has not changed but the writer’s knowledge system certainly has! 

At the implementational level, the DPM predicts transient changes in 

connectivity strengths between the cortex and the hippocampus (writer’s 

disposition) and within the hippocampus (problem-solving). These predictions 

could be tested via DCM of fMRI data. In DCM, two types of inputs give rise to the 

effect that one brain region (e.g., the hippocampus) exerts over another region 

(e.g., the entorhinal cortex): driving and modulatory inputs (Figure 7).  

 

 
Figure 7.  Dual-process Model Predictions at the Implementational Level of Analysis.  

Three dynamic causal models represent predictions informed by the current results  

(A) and two competing models (B - D). 

Whereas driving inputs directly “perturb” a region, modulatory inputs affects the 

connectivity strength between regions. Furthermore, both types of inputs can 

modulate within-region (intrinsic) connections. We can map the DPM predictions 
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on DCM inputs by setting trial-wise RT measurements as modulatory inputs on 

connections and groups (high vs. low self-monitors) as direct inputs on the 

hippocampus and the cortex respectively. This example provides a feasible (i.e., 

biologically realistic) approach for the study of the neural basis of writing to learn 

congruent with current algorithmic models. 

 

8. Concluding remarks 

On a general note, the acute reader can see that our main findings neither 

contradict nor confirm the assumptions of any writing-to-learn model (or any 

theory about the epistemic properties of writing). This is because we did not aim 

at resolving the question of which (algorithmic) set of operations fulfils the 

(computational) learning goal of writing. Rather, with the current paradigm we 

pursued a more modest theoretical ambition and a more general methodological 

tool that can be used by researchers in the writing-to-learn field. We tried to 

substantiate the idea that research on writing to learn should include mental 

chronometry and mathematical models. There are other models of writing to learn 

whose predictions could be tested using this approach –e.g., Klein et al. (2017), 

even when such models are self-contained at the algorithmic level of analysis. This 

is because the common denominator among these models is that they predict 

specific writing effects on LTM consolidation. More interestingly and with a 

broader perspective, some reductionist neuroscientific approaches suggest that 

computational goals can be explained directly from an implementational 

perspective (Bickle, 2015) –i.e., bypassing the algorithmic level. Regarding this 

point of view, the approach on offer here opens a research strategy for testing, for 

example, innovative hypotheses on epistemic writing relying on predictive coding 

and active inference (Silva & Limongi, 2017, 2018), which links directly the 

computational and implementational levels. 

  

Notes 

1. The information processing theory regards “encoding” as the process or set of 

processes that the system executes to store information in LTM. In this work, 

we use LTM consolidation. In the Experimental Approach section, we regard 

“encoding” as a nondecision parameter of the drift-diffusion model. 

2. We acknowledge that the definitions of production length and propositional 

content vary across linguistic theories. 

3. We acknowledge and thank one anonymous reviewer form stating this 

alternative explanation and the related experiment.   

4. Current developments of the CLS suggest that the hippocampus could also 

mediate the generation of abstract patterns (Schapiro et al., 2017) 
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